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Abstract

We estimate a model of route-level competition between airlines who choose whether to offer

nonstop or connecting service before setting prices. Airlines have full information about all

quality, marginal cost and fixed cost unobservables throughout the game, so that service choices

will be selected on these residuals. We conduct merger simulations that allow for repositioning

and account for the selection implied by the model and the data. Accounting for selection

materially affects the predicted likelihood of repositioning and the predicted magnitude of post-

merger price changes, and it allows us to match what has been observed after consummated

mergers.
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1 Introduction

Market power created by a horizontal merger may be limited if the merger induces either new

entry or existing rivals to reposition to compete more directly with the merging firms. Since

1992, the Horizontal Merger Guidelines have specified that the agencies should try to test whether

entry or repositioning will be “timely” and “likely”, in the sense of being profitable for rivals, and

therefore likely to happen, and “sufficient”, in the sense of preventing prices from rising (Shapiro

(2010), p. 65).1 Although economists accept these criteria, they are rarely assessed in the rigorous

and quantitative way that estimated or calibrated merger simulations are used to predict price

changes with a fixed set of products.2 This article presents a quantitative framework for assessing

the likelihood and the sufficiency of repositioning in differentiated product markets. Our empirical

analysis models service choices and pricing in route markets after airline mergers, motivated by how

several airline mergers in the 1980s were approved based on ease-of-entry/repositioning arguments

(Keyes (1987)), and by the suggestions of Fisher (1987) and Schmalensee (1987) that airline mergers

provide a setting where repositioning could offset anticompetitive effects.

We use a two-stage model where carriers first choose their discrete service types (nonstop or

connecting) and then choose prices. As motivation, suppose that nonstop service typically has

significantly higher quality than connecting service, with similar marginal costs, but a higher fixed

cost. A route has two carriers providing nonstop service and two other carriers, with smaller shares,

that provide connecting service via other airports. The nonstop carriers propose to merge, and an

analyst has to evaluate whether the merger will raise prices. The answer may (and, in our results,

it often does) depend on whether the merger will create an incentive for a connecting carrier to

1This formulation was partly a reaction to several court decisions that allowed mergers based on ease-of-entry
arguments without evaluating whether entry would offset anticompetitive effects (Baker (1996)).

2For example, Coate (2008) describes the FTC’s conclusions about the likelihood of entry in its internal memoranda
as lacking a “solid foundation” in the evidence and Kirkwood and Zerbe (2009) classify only one of 35 post-1992
court opinions as reviewing the criteria in the Guidelines systematically.
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initiate nonstop service (i.e., reposition), and, if it does, on whether the nonstop quality of the

repositioning carrier will be comparable to those of the merging parties.

We make two assumptions that distinguish our analysis from the literature. First, we assume

that all elements of qualities and costs, including those unobserved by the analyst, are known to all

carriers when they make service choices. We describe this assumption as “full information”, and

it contrasts with a “limited information” assumption (e.g., Draganska et al. (2009), Fan and Yang

(2020)) where only the distributions of quality and marginal cost unobservables are known when

firms make discrete entry or positioning choices. The second assumption is that the unobservables

of the non-merging carriers after a merger will be the same as those generating the pre-merger data

(we consider alternative synergy assumptions for the merged firm). This is the standard assumption

made by merger simulations that treat products as fixed (Nevo (2000)), but the literature that has

endogenized product choices using a limited information framework assumes that firms receive new

draws after a merger.

The full information assumption implies that carriers’ service choices will be selected based on

the unobservables. For example, carriers that choose nonstop service will tend to have higher non-

stop quality unobservables. Selection requires us to estimate the demand, marginal cost and fixed

cost equations simultaneously. We use the importance sampling method proposed by Ackerberg

(2009) to keep the computational burden manageable.3 The two assumptions also imply that we

need to calculate conditional distributions of the unobservables that are consistent with observed

service choices to perform counterfactuals. Our main methodological contribution comes from pro-

viding a routine that implements this type of conditioning, which we show materially affects our

counterfactual predictions.4

3Ackerberg’s Example 2 explains how the method could be applied to this type of game. Importance sampling has
been used to estimate a range of different types of model, but we believe that we are the first to apply the method
in the context of a discrete choice-and-price competition game with multiple unobservables.

4Conditioning captures the essence of a frequent agency argument that courts should be skeptical that rivals will
enter or reposition after a merger when they have chosen not to do so previously (Baker (1996), p. 364).
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Our counterfactuals consider three mergers that were completed after the period of data that

we use to estimate our model (Q2 2006) and one merger, between United and US Airways, that

was proposed but blocked in 2001. We focus on routes where the merging carriers were both

nonstop as these are the markets where merger simulations with fixed products predict the largest

price increases. We find that when we condition on pre-merger service choices, our predictions

are consistent with what happened after completed mergers: specifically, with conditioning, we

predict that rivals launch nonstop service on 18% of nonstop duopoly routes (i.e., routes where the

merging firms were the only nonstop carriers), which is close to the 25% rate observed for such

routes within two years of a completed merger. In contrast, we predict three times as many nonstop

launches when we do not condition on pre-merger choices (i.e., we assume that carriers draw new

unobservables post-merger). Conditioning also leads to mergers appearing to be more profitable.

Before discussing the related airline literature, we highlight several restrictive features of our

approach. First, our model is static rather than dynamic. This is consistent with the short-run

focus of most merger analysis (Carlton (2004)), but it means that, unlike the dynamic analyses

of Aguirregabiria and Ho (2012) (AH) and Benkard et al. (2020) (BBCL), we cannot examine the

Guidelines’s “timely” criterion or account for how the evolution of airlines’ networks (e.g., the

addition or elimination of hubs) or other characteristics may change service incentives.5 Second,

although our two assumptions are directionally supported by evidence that carrier unobservables

are highly correlated over time (Section 6), they are clearly polar assumptions. Future work that

generalizes our model to allow for some elements of the unobservables to be private information or

to be revealed only once positioning choice are made, as well as cross-route correlations, would be

valuable. Third, most of counterfactuals focus on possible repositioning by non-merging carriers

that provided connecting service prior to the merger, ignoring the possibility of new entry. This

5Section 7 of our working paper, Li et al. (2021), contains additional discussion of this comparison.
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is consistent with how most carriers that initiate nonstop service previously provided connecting

service (Section 6), but it is primarily motivated by a need to lower the computational burden of

our counterfactuals (Li et al. (2015) estimate a model that allows for an entry margin). Fourth, we

only model carriers’ choice of service types and a single price for traffic originating at each endpoint,

ignoring choices of capacity, schedules and the allocation of seats to different price bins. A more

complete model would include these choices, which would introduce additional unobservables.6

Finally, our baseline assumption will be that carriers make service choices sequentially, which

guarantees a unique equilibrium, whereas much of the literature allows for multiple equilibria, and

occasionally mixed strategy equilibria, in discrete choice simultaneous move games. We will explain

why this assumption does not materially affect our results.

Two related literatures use airline data. Many merger retrospectives have evaluated the price

effects of carrier mergers in airport-pair or city-pair markets, both in the 1980s (summarized in

Ashenfelter et al. (2014)) and more recently (Hüschelrath and Müller (2014), Hüschelrath and

Müller (2015), Israel et al. (2013) and Carlton et al. (2017)). Most studies have estimated price

increases, but some results are sensitive to the chosen control group and time-window.7 There

are no retrospective analyses of how post-merger repositioning by rival firms or how this affects

price changes in any industry.8 We will discuss our own estimates of what happened to prices and

repositioning after recent airline mergers, and we find that they are quite similar to the predictions

of our model. This result contrasts with Peters (2006) who found that merger simulations with

fixed products could not explain price changes after several mergers in the 1980s.

The second literature has estimated route-level entry or service choice models using airline data

6Park (2020) uses a model that includes capacity choices at one airport to address the effectiveness of slot divesti-
tures.

7For example, Borenstein (1990), Werden et al. (1991), Morrison (1996) and Peters (2006) find different signs for
short-run or long-run price effects after the 1986 TWA/Ozark and Northwest/Republic mergers.

8Hüschelrath and Müller (2015) provide an analysis of entry in airline routes but without tying entry to pre-merger
market structures.
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(Reiss and Spiller (1989) (RS), Berry (1992), Ciliberto and Tamer (2009), AH, BBCL and Ciliberto

et al. (2020) (CMT)). CMT and RS assume full information and estimate models with both service

choice (RS) or market entry (CMT), and price competition. RS recognized “that entry introduces a

selection bias in equations explaining fares or quantities” (p. S201) and they simplified their analysis

by imposing symmetry and allowing for only one nonstop carrier, restrictions that we relax. Aside

from modeling service choices, which leads to additional unobservables, there are several differences

between our analysis and CMT’s. CMT focus on identification and estimation of a simultaneous

entry choice game where there can be multiple equilibria, and they use a computationally-intensive

approach to estimation where a potentially discontinuous objective function is minimized using

a supercomputer. Our baseline assumption of sequential service choice eliminates multiplicity

and we use importance sampling so that we can estimate the model with a lower computational

burden. More importantly, we consider counterfactuals where we predict how a merger might

change route-level outcomes using the outcomes observed in the data as a starting point, accounting

for what these observed outcomes imply about our model’s unobservables. In contrast, CMT

perform counterfactuals using simulated data where all the unobservables are, by construction,

known to the researcher. Our approach is therefore much closer to the type of analysis that

agencies have to perform when considering proposed mergers.

Sections 2, 3 and 4 detail our model, data and estimation procedure respectively. Section 5

presents the parameter estimates, model fit and implied selection. Sections 6-8 present the method

and the results of our counterfactuals. Section 9 concludes. The Online Appendices provide some

additional details of the data, estimation approach and analysis of alternative assumptions.
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2 Model

We model carrier service choices at the nondirectional route level, where a route is denoted by m

and connects two airports (A and B). This is restrictive as both cities and airports have been used

to define geographic markets for antitrust purposes (Naumovich, 2018). The carriers playing the

game in route m are denoted j = 1, ..., Jm. We will assume that, conditional on the observable

variables that we include in our model, the unobservables are independent across routes. This is

also restrictive as it is possible that there are correlations across routes such as Denver-Philadelphia

and Denver-Chicago O’Hare that we will not account for, and we are ignoring how a change in prices

or service on one route may affect passenger flows on other routes.9

Overview.

Figure 1 shows the timing of the game. The assumption that discrete service choices are made

before prices are chosen is standard. Two assumptions are less standard. First, we assume that

service choices are made sequentially. We will discuss this assumption in detail below. Second,

we assume that carriers observe all demand and cost variables, for all carriers, before choosing

their service types. This is our “full information” assumption. It is stronger than a “complete

information” assumption, which simply requires that firms have the same information.10

For each route, we model demand and price competition in two markets (A→ B, B → A), one

for passengers originating at each endpoint. We assume passengers make round-trips (a passenger

making a one-way trip in the data will count as a half passenger). We use directional markets

because a carrier’s presence at the originating airport has a strong correlation with its market

9For example, there are over 6,000 directional domestic routes which Delta served via a change of planes Atlanta
hub.

10For example, Eizenberg (2014) and Wollmann (2018) assume that firms choose product portfolios knowing only
the distributions from which demand and marginal cost unobservables will be drawn. This is consistent with complete
information, but not full information.
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share.11,12

Service Types.

We assume that the carriers playing the game make a binary choice between providing nonstop

service and providing connecting service via one of its hub airports. We define a carrier as providing

nonstop service in our Q2 2006 data if a carrier has at least 65 nonstop flights on the route in each

direction, and at least 50% of its passengers in the DB1 database are identified as not changing

planes. Our main specification assumes that nonstop carriers only offer nonstop service, rather

than nonstop and connecting options, thereby reducing the number of prices per carrier from four

to two. This is a simplification, but when a carrier has nonstop service, on average 94% of its

passengers are nonstop (i.e., they do not make connections), and the average percentage is 97% in

the nonstop duopoly markets on which we focus. We will show that our estimates are very similar

when we assume that nonstop carriers also offer connecting service.

Demand.

Demand is determined by a nested logit model, with all carriers in a single nest. For consumer k

originating at endpoint A of route m, the indirect utility for a return-trip on carrier j is

uA→Bkjm = βA→Bjm + αmp
A→B
jm + νm + τmζ

A→B
km + (1− τm)εA→Bkjm (1)

where pA→Bjm is the price charged by carrier j for a return trip from A to B. The first term

represents carrier quality associated with j’s service type (CON for connecting and NS for non-

11We measure presence as the number of nonstop routes that a carrier serves from an airport, divided by the
number of nonstop routes served by any carrier.

12For example, in a route fixed effects regression, a one standard deviation increase in the difference in a carrier’s
presence across the endpoints increases the difference in the carrier’s directional market shares by 20% of the average
directional share. Although this correlation cannot be interpreted causally, it is consistent with travelers preferring
to travel primarily on a single carrier.
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stop), βA→Bjm = βCON,A→Bjm + βNSjm ×I(j is nonstop) with βCON,A→Bjm ∼ N(XCON
jm βCON , σ

2
CON ) and

βNSjm ∼ TRN(XNS
jm βNS , σ

2
NS , 0,∞), so that quality can depend on observed carrier-origin and route

characteristics, and on a random component that is unobserved to the researcher. As qualities are

directional, each carrier has four βjm draws (βNS,A→Bjm , βNS,B→Ajm , βCON,A→Bjm and βCON,B→Ajm ). The

random element of the carrier-specific quality draws (i.e., the parts not explained by the observ-

ables) will reflect differences in passenger tastes (for example, local loyalty developed from choosing

the carrier historically), and also differences in carriers’ schedules and aircraft fleets. A complete

model would endogenize schedules and plane choices, but this would require additional equations

and unobservables.

TRN denotes a truncated normal distribution and the lower truncation of βNSjm at zero implies

that the nonstop service is always preferred to connecting service on the same carrier. This is

consistent with the existing literature finding that both leisure and business travelers have strong

preferences for nonstop service (Berry and Jia (2010) and Ciliberto and Williams (2014)) as well

as the fact that in our data nonstop carriers have higher market shares and average prices than

connecting carriers, but we could relax this assumption. Note that estimation will require some

more restrictive support conditions on draws (see Section 4 and Appendix B.2).

The price and nesting parameters are assumed to be the same for all consumers on a given

route, but we allow them to vary across routes, with αm ∼ TRN(Xαβα, σ
2
α,−∞, 0), where Xα

will include a measure of the importance of business travel on the route, and τm ∼ N(βτ , σ
2
τ ).

νm ∼ N(0, σ2
RE) is a route-specific random effect in demand, i.e., a demand shock that is common

across carriers and is also common across the directions on the route.13 εA→Bkjm is a standard logit

error for consumer k and carrier j.

Although we allow the price and nesting coefficients to vary across routes, demand has a nested

13In contrast, the idiosyncratic variation in βA→Bjm and βB→Ajm is independent across directions.
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logit, rather than a random coefficient structure, within each market. The nested logit model

implies strong restrictions on cross-price elasticities, but it is convenient when many pricing games

have to be solved to estimate the model and perform counterfactuals.14

Marginal Costs.

Each carrier has a constant marginal cost draw for each type of service, cjm ∼ TRN(XMC
jm βMC , σ

2
MC , 0,∞),

where XMC
jm βMC allows costs to depend on the type of carrier, the type of service and the distance

traveled. As passengers make round-trips, the marginal cost is non-directional, so each carrier has

two marginal cost draws (cNSjm and cCONjm ). The unobserved variation in marginal costs may reflect,

for example, variation in a carrier’s fuel efficiency on different routes (which will depend on plane

type) and its cost of handling bags.

Fixed Costs of Nonstop Service and The Value of Connecting Traffic on Routes
to Hubs.

We assume that carriers have to pay a fixed cost, Fjm, to offer nonstop service in both direc-

tions on route m. This could include the opportunity cost of assigning gates and planes to a

route, as well as airport gate rental and landing fees, which may vary in unobserved ways across

routes and carriers. There is no fixed cost to providing connecting service. We assume that

Fjm ∼ TRN(XF
jmβF , σ

2
F , 0,∞) where XF

jm includes a dummy for a slot-constrained airport where

opportunity costs may be higher.

In the data, it is common for more than 60% of passengers on routes to or from a carrier’s hub to

be making connections. A model is only likely to be able to predict a hub carrier’s service choices if

it accounts for the size of these connecting passenger flows in some way. We take a relatively simple

approach of assuming that a carrier’s fixed costs can be offset by a linear function of three variables,

14A natural extension would be to explicitly model differences in demand from business and leisure travelers as in
Berry and Jia (2010) and Ciliberto and Williams (2014).
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which we will call “network variables”: dummy variables for domestic and international hubs, and

a third variable that is (the log of) a prediction of the total number of connecting passengers that

a carrier will serve when it provides nonstop service on a route that involves a domestic hub (for

non-hub routes, the variable is zero).15 Appendix A.2 describes the model used to construct the

prediction, which captures the geographic convenience of different connections on different routes,

and it is estimated using data from one year prior to our estimation sample to reduce endogeneity

concerns. Appendix C provides descriptive regressions showing that, together with market size, the

variables included in our fixed cost specification can predict service choices quite accurately.16

One might be concerned that a failure to model connecting traffic in more detail will make

our counterfactuals less informative. However, our counterfactuals are focused on whether, when

two nonstop carriers merge, their connecting rivals will introduce nonstop service. Although the

pre-merger nonstop carriers are often serving their hubs, this is never true for the connecting rivals

on the routes that we consider, and, as a result, their network variables are all zero. On the other

hand, the merging carriers will be assumed to maintain nonstop service, which is what we observe

in the data, so that changes in any of their fixed cost variables have no effect on our predictions.

Price Competition.

Given service choices, carriers play static, simultaneous Bertrand Nash pricing games for passengers

originating at each endpoint. Our assumptions of nested logit demand, constant marginal costs

and single product firms imply that there will be unique equilibrium prices and directional variable

profits, πA→Bjm (s), given service choices, cost and quality draws (Mizuno (2003)). j’s market-level

15We use the log because the standard deviation of the variable in levels is very large. We require that the net
fixed cost is non-negative as this reduces the range of the importance draws that we need to take. We show that this
does not prevent us from accurately matching service choices at major hubs.

16Ideally one would allow the profitability of a connecting passenger to vary across routes. However, when we
simulate data from our estimated model, legacy carriers’ implied margins on connecting passengers do not vary too
much across markets (median $94, with 50% of the predictions between $83 and $108).
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variable profits are πjm(s) = πA→Bjm (s) + πB→Ajm (s), as service choices are assumed to be the same

in both directions.

Our assumption that carriers only choose a single price in each direction abstracts away from

how carriers sell tickets at many different prices because of price discrimination and revenue man-

agement incentives. There are no oligopoly revenue management models that it would be feasible

to incorporate within the current model.17

Service Choices.

In the first stage, carriers choose whether to commit to the fixed cost required for nonstop service,

or to provide connecting service. Their realized profits in the full game are therefore πjm(s)−Fjm×

I(j is nonstop in m) where Fjm is a fixed cost draw associated with providing nonstop service. Our

baseline specification assumes that carriers make their service choices sequentially in order of their

average presence (see footnote 11 for the definition) at the endpoints. This assumption guarantees

a unique predicted outcome for the whole game. We will show that our estimates are robust to

making the weaker assumption that firms either move sequentially, but in an unknown order, or

that they use pure strategies in a simultaneous move service choice game.

Solving the Game.

Conditional on service choices, Nash equilibrium prices, shares and profits can be found by solving

the system of pricing first-order conditions. One approach to finding equilibrium service choices

would be to compute equilibrium profits for all combinations of service choices, and then to apply

backwards induction to the branches of the extensive-form game tree. However, we can reduce

computation by testing whether a carrier would make positive profits from nonstop service if all

17Lazarev (2013) and Williams (2020) estimate revenue management models for monopoly markets. Carriers may
use the same list prices in both directions, but average realized prices may differ due to differences in demand. We
will treat this outcome as reflecting different prices being set in each direction.
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later movers were not in the game at all. If it would not, we know that the carrier will never

choose nonstop service and we can delete branches where it would.18 See Appendix B.1 for more

discussion.

Full Information, Selection and Market Structure.

Our full information assumption implies that service choices will be correlated with demand and

marginal cost unobservables of all firms, leading to a non-linear form of selection. Correlations

between the unobservables could introduce additional non-linearities. Our baseline assumption is

that, with the exception of the common route-level demand effect, unobservables are independent,

although, as we note in footnote 31, observed covariates lead to quite strong correlations between

a carrier’s nonstop service quality and its costs of nonstop service. Our robustness checks allow

for correlations in the unobservables and we will find the estimated correlations to be small and

statistically insignificant.

Appendix A of our working paper (Li et al., 2021) uses an example to investigate the implications

of limited and full information for market structure. Full information can significantly lower the

probability that more than one carrier will be nonstop because when a carrier expects to have

a nonstop rival, it will expect that rival to be a stronger competitor, reducing its own profits

from nonstop service, when the rival knows its own demand and marginal cost unobservables.

On the other hand, carriers may regret their service choices in a limited information model, once

unobservables are revealed.19 If unobservables are persistent and sunk costs are small, this feature

makes it doubtful that market structures predicted by a limited information model, pre- or post-

merger, will actually persist in the data. This provides an additional reason for wanting to focus

18For example, suppose that the first moving carrier’s variable profits as a nonstop monopolist with no other carriers
active at all would be lower than its nonstop fixed cost. This implies that it can never find nonstop service to be
profitable, so one-half of the tree of the extensive form game can be eliminated.

19As pointed out by a referee, regret may arise in a full information model if service choices are made simultaneously
and firms used mixed strategies. Our example assumes that service choices are made sequentially.
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on a full information model to predict the effects of mergers, even in the short- or medium-run.

3 Data and Summary Statistics

We estimate our model using a cross-section of publicly-available DB1 (a 10% sample of domestic

itineraries) and T100 (records of flights between airports) data for the second quarter of 2006.

We use relatively old data so that we can make predictions about subsequent mergers and avoid

later years when carriers have been alleged to price cooperatively (Ciliberto and Williams, 2014).

Appendix A provides additional detail and discussion. Tables 1 and 2 provide summary statistics.

Markets and Carriers. We use data for 2,028 airport-pair markets linking the 79 busiest US

airports in the lower 48 states. Excluded routes include short routes and routes where nonstop

service is limited by regulation. We model six named legacy20 carriers, American Airlines, Con-

tinental Airlines, Delta Air Lines, Northwest Airlines, United Airlines and US Airways, and one

named low-cost carrier (LCC), Southwest. We aggregate other ticketing carriers into composite

“Other Legacy” (e.g., Alaska Airlines) and “Other LCC” (e.g., JetBlue and Frontier) carriers.

We attribute tickets and flights to mainline ticketing carriers when they are operated by regional

affiliates.

Service Types, Market Shares and Prices. We define the competitors on a route as carriers

ticketing at least 20 DB1 passengers and with at least a 1% share of traffic. On average, there are

four competitors, with as many as nine on long routes, such as Orlando-Seattle, with many plausible

connections. We define a carrier as nonstop when it has 64 nonstop flights in each direction and

50% of passengers do not make connections, although the exact thresholds have little effect on

the classification. The remaining competitors are classified as connecting. Most routes have no

20Legacy carriers are carriers founded prior to deregulation in 1978, and they typically operate through hub-and-
spoke networks. Our classification of carriers as LCCs follows Berry and Jia (2010).
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nonstop carriers, but routes with at least two nonstop carriers account for a majority of passenger

trips. This type of route will be the focus of our counterfactuals. Most routes with multiple

nonstop carriers connect large cities or hub airports, but non-hub pairs such as Boston-Raleigh and

Columbus-Tampa also have nonstop duopolies.21

We measure a carrier’s price as the average round-trip price in DB1. A carrier’s market share

is calculated as the total number of passengers that it carries in DB1, regardless of service type,

divided by a measure of market size. We calculate market size as the prediction from a gravity

model, which accounts for historical total endpoint enplanements using endpoint fixed effects and

route distance (see Appendix A.1). This reduces unexplained heterogeneity in market shares across

routes, accounts for correlations in aggregate demand across routes at the same airport, and explains

service choices better than alternative measures, such as average endpoint city populations.

Exogenous Variables. Carrier presence is calculated using T100 data. Nonstop distance is

measured as the great circle distance between two airports, and the distance for connecting service

is measured as the distance via the carrier’s closest connecting hub airport.22 Appendix A.2 details

which airports are domestic or international hubs and the construction of the connecting traffic

variable. The business index variable, which approximates the proportion of business travelers on

a route, is based on data provided by Severin Borenstein (Borenstein (2010)).

4 Estimation

We estimate the model parameters, Γ = (β, σ), using a simulated method-of-moments estimator.

In this section we outline the algorithm, the moments, identification and possible alternative im-

21If we had defined markets using city-pairs, rather than airport-pairs, there would be 192 nonstop duopolies (out
of 1,533 city-pair markets), with 90 city-pair markets having three or more nonstop carriers.

22For the composite Other Legacy and Other Low Cost carriers it is not straightforward to assign connecting routes.
Therefore we use the nonstop distance for these carriers, but include additional dummies in the connecting marginal
cost specification to provide more flexibility.
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plementations. Appendix B provides additional details, including evidence on the performance of

the algorithm and its underlying assumptions.

Objective Function and Moments.

The objective function is defined as

h(Γ)′Wh(Γ)

where W is a weighting matrix, and h(Γ) is a vector of moments where each element has the form

1
M

∑m=M
m=1

(
ydatam − ̂Em(y|Γ, Xm)

)
Zm. ydatam are observed outcomes and Zm are a set of observed

exogenous variables that serve as instruments. ̂Em(y|Γ, Xm) are the predicted outcomes of the

model for market m given the parameters Γ and observed variables Xm. We describe the moments

that we use before describing how we compute ̂Em(y|Γ, Xm).

Standard demand estimation with fixed product characteristics (e.g., Berry (1994)) uses mo-

ments that are based on the assumed orthogonality of a structural unobservable and instruments.

However, the selection implied by the full information assumption implies that the structural er-

rors for the service type that is chosen will not have mean zero and will be correlated with all

of the exogenous variables in the model. Instead, we create moments using the fact that, for the

true parameters, the expected value of the observed outcomes should match the expectation of

predicted outcomes from the model.23 The moments are summarized in Table 3. The outcomes

include both market-carrier outcomes (e.g., Delta’s price, its share and an indicator for whether

it enters nonstop) and market/route outcomes (such as the sum of squared market shares, and

the squared number of nonstop carriers). In principle, any function of the observed variables that

are assumed to be exogenous can be used as instruments. The ones that we use can be broken

into three groups: market-level variables (e.g., market size and the business index), market-carrier

23Moments where outcomes are matched are usually used to estimate endogenous entry models (e.g., Berry (1992)),
but here we are also applying them to prices and market shares.
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characteristics (e.g., endpoint presence, and distance of connecting service) and the characteristics

of rival carriers (e.g., Delta’s presence when we are looking at an outcome for a carrier other than

Delta). One robustness check will use a subset of the instruments.

Computation of the Moments Using Importance Sampling.

A nested fixed point algorithm would re-compute Em(y|Γ, Xm), by resolving simulated games for

each market, each time a parameter is changed. We instead approximate Em(y|Γ, Xm) using

importance sampling following Ackerberg (2009).

The idea is straightforward. Denoting a particular realization of all of the draws as θm,

Em(y|Γ, Xm) =

∫
y(θm, Xm)f(θm|Xm,Γ)dθm

where y(θm, Xm) is the unique equilibrium outcome given our baseline assumptions. This integral

cannot be calculated analytically, but we can exploit the fact that

∫
y(θm, Xm)f(θm|Xm,Γ)dθm =

∫
y(θm, Xm)

f(θm|Xm,Γ)

g(θm|Xm)
g(θm|Xm)dθm

where g(θm|Xm) is an “importance density” chosen by the researcher.24

This leads to a two-step estimation procedure. In the first step we take many draws, indexed by

s, from densities g(θms|Xm) and solve for the equilibrium outcome, y(θms, Xm), for each of these

draws. In the second step we estimate the parameters, approximating Em(y) using

̂Em(y|Γ, Xm) =
1

S

S∑
s=1

y(θms, Xm)
f(θms|Xm,Γ)

g(θms|Xm)

24The “change of variables” discussed by Ackerberg is implicit in our presentation of the model. For example, if
we had expressed a fixed cost as Fjm = XjmβF + uFjm, then a change of variables would be required to explain why
the approach takes draws of Fjm rather than uFjm.
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where we only need to recalculate f(θms|Xm,Γ) when the parameters change. The objective

function is smooth because the f(θms|Xm,Γ) densities are smooth in the parameters. We minimize

the objective function using the fminunc function in MATLAB.

Appendix B details our selection of the parameters of the g density functions that we use in

estimation and also our specification of the supports of the random variables (quality draws, costs,

nesting and price parameters). As suggested by Ackerberg, the choice of g comes from initially

estimating the model using gs that place weight on a broad set of draws.25

We form the W matrix by using the results from initially estimating the model using an identity

weighting matrix. However, rather than using the inverse of the full covariance matrix, our final

estimation uses a diagonal weighting matrix, with equal total weight on the groups of moments

associated with price, share and service choice outcomes and, within each group, the weight on each

moment is proportional to the reciprocal of the variance of that moment from previous estimates.

We choose this approach because, with many moments relative to the number of observations

(16,130 carrier-market-directions), the estimated covariances are likely to be inaccurate, and, in

practice, some estimates are less stable if we use the full covariance matrix.

Computational Burden.

For the final round of estimation, solving 2,000 games for 2,028 routes takes less than two days

on a medium-sized cluster, and the point estimates of the parameters are calculated in one day

on a laptop without any parallelization.26 In contrast, a nested fixed point approach, although it

should be econometrically more efficient for a given number of draws, would require parallelization

to repeatedly solve games for different parameters, and it would also likely require more function

25Unlike the choice of starting values, the chosen g will always matter for the exact values of the estimated
parameters. However, we have found that alternative gs, or using additional rounds of estimation, leads to very
similar results.

26The calculation of standard errors using a bootstrap requires repeating the estimation step 100 times, so this is
performed on a cluster.
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evaluations to minimize a discontinuous objective function.27

It has been suggested to us that importance sampling could be used in different ways to make es-

timation more efficient. This is possible, but at least two suggested alternatives cannot be used. For

example, Roberts and Sweeting (2013) use importance sampling to calculate a simulated likelihood

but this exploits the fact that in their incomplete information auction game, any possible outcome

has positive likelihood for any set of unobservable draws for auction characteristics, whereas, in our

setting, many outcomes may have a zero simulated likelihood even with many simulations. The

Geweke–Hajivassiliou–Keane (GHK) estimator (Keane, 1994) provides an efficient method for es-

timating models with multiple normally distributed errors using sequential conditioning. However,

in our setting, the dependence of a firm’s variable profits on the draws of every carrier in the market

would make sequential conditioning infeasible.

Identification.

As explained above, standard identification arguments for demand and marginal cost parameters

will fail as selection implies that carrier demand and marginal cost residuals for chosen service

types will neither have mean zero, nor be uncorrelated with exogenous demand and marginal cost

variables. Identification therefore requires accounting for the exact form of selection implied by

the full model. However, in our setting, the observed exogenous variables, including market size

and the network variables affecting fixed costs, are able to predict the service choices of a large

proportion of carrier-route observations almost perfectly (see Appendix C). This implies that, for

these observations, there should be almost no selection on demand and marginal cost unobservables

(i.e., the expected value of the unobservables should be close to zero, and they should be almost

uncorrelated with the exogenous variables), in which case standard identification arguments should

27CMT lower their computational burden by allowing a maximum of only six players per market, rather than our
nine, and assuming that demand and pricing are non-directional.
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approximately apply.

CMT estimate the demand and marginal cost parameters by adjusting the standard demand and

marginal cost moments to account for selection, with all of the observed exogenous variables (i.e.,

observed fixed cost shifters for a firm and its rivals, as well as demand and marginal cost shifters) as

valid instruments.28 We take a different approach, using moments conditions that directly match

observed and predicted carrier and market price, share and service choice outcomes, but we can

also use the observed exogenous variables as valid instruments. Given consistent estimates of the

demand and marginal cost parameters, identification of the fixed cost parameters follows from how

carrier service choices vary with the changes in the distribution of variable profits, as market size, a

carrier’s own exogenous characteristics and the exogenous characteristics of rivals vary. Our carrier

service choice moments are similar to those used in the literature on discrete choice games (Berry,

1992).

5 Parameter Estimates

The first columns of Tables 4 and 5 present our baseline estimates. The coefficients are consistent

with expected patterns. All else equal, consumers have a strong preference for nonstop service,

legacy carriers and carriers with greater originating airport presence. Demand is less elastic on

routes with more business travelers.29 The average own price demand elasticity is -4.25, and the

elasticity of demand for air travel (i.e., when all prices rise by the same proportion) is -1.3, close to

the literature average reported by Gillen et al. (2003). For the average nonstop carrier, consumers’

preference for nonstop service is $118 dollars.

28CMT allow for multiple equilibria so that, for some market structures, the moments take the form of inequalities,
although there are moment equalities for outcomes where no firms or all firm enter. Given that we assume sequential
entry, similar moments for our model would all be moment equalities.

29The expected price coefficient (α) for Dayton-Dallas-Fort Worth, which has the highest business index, is -0.34
compared to the cross-market average of -0.57.
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The estimated average level of marginal costs reflects the elasticity of demand, our assumption

of Nash pricing and our use of average prices as our price measure.30 LCCs are estimated to have

lower marginal costs, and costs increase with distance. To illustrate, consider the 3,000 mile round-

trip Miami-Minneapolis route. For the named legacy carriers, the expected nonstop marginal cost

is $345, compared to an average of $367 for (longer distance) connecting service. Marginal costs

for Southwest (and Other LCC) are lower and, for this route, Southwest’s expected nonstop and

connecting (via Chicago Midway) costs are almost identical ($303 and $298 respectively). On a

non-hub route, the average nonstop fixed cost is $924,000, but, on domestic hub routes, the average

fixed cost, once we offset the value of the network variables, is $399,000.

The Role of Unobservables.

Accounting for selection on unobservables will be a key feature of our counterfactual analysis. It is

therefore natural to look at the relative importance of observable covariates and unobservables in

different parts of our model. To assess this, we simulate each market 20 times using the baseline

coefficients, and compute how much of the variation (across carrier-market simulations) in a par-

ticular type of draw is accounted for by variation in the observed Xs. For example, the standard

deviation of Fjm is $301, 912, and the standard deviation of XF
jmβ̂F is $259, 481, so that unobserved

heterogeneity provides only 14% of the variation. Similarly, unobserved heterogeneity accounts for

only 3% of the variation in marginal costs and 15% of the variation in the price sensitivity of de-

mand. However, it accounts for 26% and 34% of variation in connecting and nonstop carrier quality

respectively, and our estimates also indicate that the variance in the unobserved route-level demand

effect is quite large. These results suggest that accounting for selection on demand unobservables

may be particularly important.

30As noted by a referee, airlines will often sell some seats at very low fares (e.g., $99 returns) suggesting that the
true marginal cost of an additional passenger is lower, and that higher average fares reflect the ability of carriers to
extract consumer surplus using revenue management techniques.

21



Model Fit.

We use the 20 sets of draws to assess how well our model predicts observed service choices (discussed

here) and variation in prices and market shares across service types (Appendix B.5). We correctly

predict a carrier’s service choice for 87.5% of draws (with standard error 1.1%), and for 82.6%

(2.2%) of observations where a majority of our simulations predict a carrier will be nonstop, the

carrier is nonstop in the data. We accurately predict carrier choices at hubs (Appendix Table B.2,

e.g., Delta serves 96.5% of routes at Atlanta nonstop compared to a prediction of 92.5% (2.3%)) and

non-hub airports. Table 6 illustrates the non-hub fit for routes with Raleigh-Durham (RDU) as an

endpoint. The proportion of nonstop routes is served accurately for each carrier. The prediction

is least accurate for United, as our simulations predict that United should serve Denver and San

Francisco nonstop. United has launched nonstop service on both routes since 2006.

Robustness Checks.

We now discuss what happens when we relax some of the assumptions imposed on our baseline

estimates.

Correlations Between the Unobservables. Our baseline specification imposes that de-

mand and cost unobservables are independent.31 Columns (2) and (3) of Tables 4 and 5 present

our estimates when we allow for correlations between the unobserved incremental quality of non-

stop service and the fixed cost of providing nonstop service, and between connecting quality and

connecting marginal costs. The estimated covariances are small, and only one of them is statisti-

cally significant at the 10% level. When we have tried to allow for unrestricted correlations, the

objective function has often had multiple local minima, but we have not found clear improvements

31However, the coefficients on observed covariates lead to strong correlations between demand and costs. For
example, based on the 20 sets of draws used to examine model fit, the correlation between a carrier’s nonstop quality
and its fixed costs of nonstop service is -0.56.
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in fit.32,33

Nonstop Service Includes Connecting Service. Our baseline model assumes that a carrier

that offers nonstop service only provides nonstop service. However, carriers often offer both nonstop

and connecting service. Column (4) of Tables 4 and 5 presents our estimates when we assume

nonstop carriers provide connecting service and set four prices on each route.34 The majority of

the coefficients are close to their baseline values.

Reduction in the Number of Moments. Our baseline estimation uses 1,384 moments,

which is large relative to the sample size, creating the possibility of bias. Appendix B.6 presents

estimates, an analysis of fit and some example counterfactual results using only the 740 carrier-

specific moments. All of the results are similar to the baseline.

Relaxing the Known, Sequential Order Assumption. Our baseline estimates assume

that service choice decisions are made in a known sequential order, which guarantees a unique

equilibrium and point identification.35 In contrast, Ciliberto and Tamer (2009), Eizenberg (2014)

and Wollmann (2018) estimate using inequalities assuming that moves are simultaneous and that

any pure strategy equilibrium can be played. Ciliberto and Tamer (2009) report that there are

multiple equilibria in over 95% of simulations of their airline entry game. If this was true in our

setting then one might be very concerned that our sequential move assumption could produce very

misleading estimates.

There are two reasons to believe that this is not the case. Leaving aside the possibility that a

32For the reported estimates, a grid search on the covariance parameters confirms that values close to zero minimize
the objective function.

33CMT estimate a more flexible covariance structure and find that some covariances are large. This may reflect how
unobservables in their model have to account for large share and price differences between nonstop and connecting
carriers, whereas we explicitly model these differences.

34The difference in this model is that, when solving our simulated games, we solve for four prices and quantities
(two types of service in each direction) for carriers that choose to be nonstop. These are then matched, as carrier-
direction-nonstop service type averages, to the moments from the data that are calculated in the same way.

35On the other hand, the parameters can be point identified even if some equilibria are not unique, because an
outcome such as “no firms are nonstop” will always be unique. In our data the most common outcome is that no
firms are nonstop.
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carrier is exactly indifferent between two service types, given what other carriers choose, the model

can only support more than one equilibrium outcome if at least two carriers do not have strictly

dominant strategies. Without estimating a specific model, one indicator that, in fact, most carriers

are likely to have dominant strategies is that probit regressions using market and a carrier’s own

characteristics are able to predict carriers’ observed choices with very high probability. As discussed

in Appendix C, two or more carriers have predicted nonstop probabilities between 0.1 and 0.9 in

only 15% of markets. In contrast, if we use the same covariates to predict whether carriers that

serve the endpoints provide either connecting or nonstop service, similar to Ciliberto and Tamer’s

outcome of interest, the corresponding figure is 96%. This suggests that the sequential assumption

is very likely to be less restrictive when examining service choice. This is supported by more

formal analysis. When we simulate data from our estimated baseline model, we find that multiple

equilibrium outcomes can be supported (either by pure strategies in a simultaneous move game,

or a sequential game with any order of moves) for only 1.6% of simulated games. Appendix B.7

also reports the parameters that minimize the objective function when we extend our estimation

methodology to use moment inequalities to allow for simultaneous moves or unknown orders. These

parameters are very similar to the baseline estimates, and the percentage of games that support

more than one equilibrium outcome is almost identical.

6 Merger Counterfactuals

We now present our analysis of counterfactuals, which we spread across three sections for ease of

referencing. This section describes the mergers that we consider, and describes the assumptions and

predictions of standard merger simulations where service choices are held fixed. We find that the

mergers we consider tend to have the most potential to raise prices in markets where the merging

parties are nonstop. Section 7 implements merger simulations endogenizing the service choices of
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the non-merging firms, focusing on markets where the non-merging firms are nonstop. Section

8 uses the model to examine how far two alternative remedies can constrain post-merger market

power. We use the baseline demand and cost estimates throughout these sections (see Appendix

B.6 for an example that shows the results are very similar using an alternative set of parameter

estimates).

The Set of Mergers and Routes Considered.

We examine the three legacy mergers (Delta/Northwest (2008), United/Continental (2010), Ameri-

can/US Airways (2013)) completed after 2006 and a United/US Airways merger that was proposed

in 2000, but abandoned when the Department of Justice opposed it.36 We do not consider the

consummated merger between Southwest and Airtran, because Airtran is part of our composite

“Other LCC”.

The United/Continental and American/US Airways mergers were allowed to proceed on the

condition that the parties divested slots and other facilities at major airports to low-cost carriers.

In the United/US Airways merger, the parties proposed a remedy where a third carrier, American,

would commit to provide nonstop service for ten years on several routes where the merging parties

were nonstop duopolists. The Department of Justice did not accept the remedy on the grounds it

was insufficient to restore pre-merger competition.37 Section 8 will discuss both types of remedy.38

36BBCL consider the United/US Airways, Delta/Northwest and United/Continental mergers, and CMT consider
the American/US Airways merger.

37A November 2001 speech by R. Hewitt Pate, Deputy Assistant Attorney General, explaining that the proposed
remedy was insufficient can be found at https://www.justice.gov/atr/department-justice-10 (accessed June 29,
2017).

38Park (2020) uses a model that allows for the allocation of slots across routes to provide a detailed analysis of the
effectiveness of the American/US Airways divestiture.
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Merger Counterfactuals with Fixed Products.

We first present results from a set of standard merger counterfactuals (e.g., Nevo (2000)) that do

not allow for repositioning. We make the following assumptions when we resolve for equilibrium

prices.

Assumption 1 (Merger Counterfactuals with Fixed Products) We assume

1. The products owned by the merging parties are eliminated and replaced by a single product of the

merged carrier (“Newco”). We consider two alternative assumptions about Newco’s demand and

costs:

(a) (“baseline assumption”) Newco has the quality and marginal cost of the merging party with

the higher average endpoint presence before the merger when both parties have the same service

type, and otherwise it has the quality and marginal cost of the nonstop party.

(b) (“best case assumption”) Newco has the higher quality and the lower marginal cost of the

merging parties.

2. the nesting and price parameters are equal to their expected values for each market given observed

market characteristics and the baseline parameter estimates.

3. the products of the non-merging carriers remain the same, with the same service type and the

same demand and marginal cost draws as in the data.

The second assumption reduces the computational burden, although we have verified that the

results are almost identical if we relax it, consistent with the small estimated standard deviations of

the price coefficient and the nesting parameter. The best case assumption parallels the assumption

of Li and Zhang (2015) concerning valuations and hauling costs in the context of timber auctions,

and it tends to increase the profitability of the merger relative to the baseline assumption. We can

implement the merger simulation by inverting the demand of each carrier (for its offered service
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type) and its marginal cost from the observed price and market share data in each market, given

the demand system parameters and the Nash pricing assumption.39

Comparison of Merger Price Effects Across Different Market Structures.

The first panel of Table 7 reports pre-merger and post-merger prices for four different groups of

markets under the baseline assumption about the merging parties. The reported pre-merger price

is the average of the share-weighted average prices for the merging carriers across directions, and

the post-merger price is the average for Newco across directions. To save space, we do not report

standard errors for the post-merger prices, although, as can be seen when we report them for

nonstop duopoly routes in other parts of the table, they are small. Looking at the cross-merger

average prices in the final column, the price increases are largest when the merging parties are both

nonstop and they are the only nonstop carriers (nonstop duopolies) (12.4%), and, next, when they

are both nonstop and there is at least one nonstop rival (9.1%). Price increases are smaller when

one (6.1%) or both (no change) of the merging carriers are connecting.40 Given these results, we

will focus the rest of our analysis on the 50 routes where both the merging carriers are nonstop

prior to the merger, and particularly the 24 routes where they are nonstop duopolists.41

Some have suggested that our focus on routes where the merging firms are already nonstop

means that we are missing the possibility that the merger might expand the set of routes where the

merging parties offer nonstop service.42 It is true that a full welfare evaluation of the merger would

39For this exercise it is not necessarily to separate out the components of quality that come from the market demand
and carrier-specific unobservables. There is, however, one non-standard feature of the problem, that arises from our
assumption that marginal costs are non-directional. We proceed by calculating the directional marginal costs implied
by the prices and market shares of each carrier, and then taking the average.

40When two connecting carriers merge, consumer surplus still falls because the disappearance of a choice, but the
drop is much smaller than for nonstop duopolies (average $5 per pre-merger traveler, compared to $67 for nonstop
duopolists).

41Appendix A.3 provides a comparison of these 24 routes with routes where there were two other nonstop legacy
carriers. We find that the nonstop duopolists tend to have smaller shares on the 24 routes, suggesting that there may
have been less scope for the merged firm to exercise market power on the routes that we examine.

42These expansions are a prediction of the analyses in BBCL and CMT, although neither present evidence that
these expansions actually took place after consummated transactions.
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need to examine all routes, but our focus on nonstop overlaps is consistent with antitrust practice

that focuses on markets where there are anticompetitive concerns without a requirement to credit

“out of market” benefits (Rybnicek and Wright, 2014). Second, in practice, the completed mergers

were not followed by significant expansions of nonstop service, at least in the short-run, although it

is not, of course, clear what would have happened without a merger. For example, three quarters

before their merger, United and Continental served a total of 258 of our sample routes nonstop,

and the merged carrier served 259 routes nonstop seven quarters after the merger.43

Detailed Analysis for Nonstop Duopoly Markets.

The second and third panels of Table 7 report more detailed results for the 24 nonstop duopoly

markets, under the baseline (second panel) and best case (third panel) assumptions. We report

standard errors, and all of the predictions are precise. On two routes (one for Delta/Northwest and

one for United/US Airways) there are no connecting rivals, so the mergers create monopoly.

In the baseline case, all of the considered mergers are predicted to raise the merging carriers’

average prices by between 5% and 15%, and the parties’ market shares are predicted to fall by

between 25% and 30%, reflecting both the price increases and the elimination of a product. The

next rows allow us to examine the profitability of the merger. Although the decision to merge is

taken at the network level, not the route level, the predicted profitability of a merger can be used

to understand whether the assumptions are plausible. Although the elimination of a product and

the lack of synergies means that variable profits tend to fall, total profits tend to increase because

a fixed cost of nonstop service is eliminated. Connecting rivals are predicted to raise their prices,

although the increases are small. Consumer surplus, measured in dollars per pre-merger traveler,

tends to fall quite significantly.44

43The equivalent numbers for the Delta/Northwest merger are 336 and 296, but with a declining trend before the
merger, and for American/US Airways they are 291 and 302, with a slight upward trend before the merger.

44We measure consumer surplus per pre-merger traveler because the markets considered vary quite dramatically in
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The directional changes in the predictions when we make the best case assumption are intuitive,

with the merging parties losing fewer passengers, and their profits increasing. However, the magni-

tudes of the changes are quite small, because the higher presence carrier, which survives under the

baseline assumption, will usually be the carrier with the highest quality, and our estimates imply

that nonstop legacy carriers have very similar marginal costs, so choosing one rather than the other

makes little difference. For example, we predict that the merged firm’s prices increase by 11.2%,

rather than 12.4% under the baseline assumption.

7 Mergers Counterfactuals with Repositioning by Rivals

We now analyze counterfactuals where we allow rivals to change their service choices after the

merger. Our discussion of our assumptions and method will assume that we are considering markets

where the merging carriers are nonstop duopolists, but we will also consider markets where there

are additional nonstop rivals.

Assumptions.

Assumption 2 (Merger Counterfactuals with Repositioning) We assume

1. the nonstop products owned by the merging parties are eliminated and replaced by a single

nonstop product of the merged carrier (“Newco”). We consider two alternative assumptions:

(a) (“baseline assumption”) Newco has the quality and marginal cost of the merging party with

the higher average endpoint presence before the merger .

(b) (“best case assumption”) Newco has the higher quality and the lower marginal cost of the

merging parties.

2. the nesting and price parameters are equal to their expected values for each market given observed

size, and our definition of market size is imperfect.
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market characteristics and the baseline parameter estimates.

3. the non-merging carriers have the same quality and cost draws for both types of service as they

do before the merger, which should, therefore, be consistent with their pre-merger service choices.

They choose their service type in the same sequential order as before the merger, knowing that

Newco will be nonstop. We assume that no additional carriers, that do not provide some type of

service in the data, can enter.

These assumptions follow the assumptions made in the fixed product case as closely as possible,

except for allowing connecting rivals to reposition. One might ask why assuming that qualities and

costs remain the same is a reasonable assumption for either type of merger simulation. An empirical

justification is that, when we apply our estimated demand model to panel data on prices and

market shares, the implied carrier demand and marginal cost unobservables are highly persistent,

although we recognize that our assumption of perfect persistence is even stronger. Persistence is

also consistent with our assumption that carriers will know the values of the unobservables.

We measure persistence by examining the correlation between unobservables using a regression

where the implied demand or marginal cost unobservable in the second quarter of 2006 (our es-

timation period) is regressed on a constant and the carrier’s unobservable in the second quarter

of 2005. The unobservables are backed out using the expected values of the price and nesting

coefficients in the demand system and the pricing first-order conditions, under the assumption that

the same demand system is appropriate in both years. The serial correlation coefficient for demand

unobservables for carriers that are nonstop in both quarters is 0.638 (standard error 0.016) for a

specification without market fixed effects, and 1.013 (0.030) when we include market fixed effects to

control for differences in the level of demand across markets. For connecting carriers, the average

coefficients are lower (0.410 and 0.690, respectively). We also observe persistence for marginal cost

unobservables. For nonstop carriers, the serial coefficients are 0.889 (s.e. 0.014) and 0.802 (0.028)
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without and with market fixed effects, and 0.798 (0.008) and 0.419 (0.015) for connecting carri-

ers.45 Carriers’ service choices are also highly persistent, consistent with persistence of demand,

marginal cost and fixed cost unobservables.46 Of course, persistence in service choices could also

be explained by the addition of nonstop service requiring a large sunk cost, even if fixed costs and

variable profits are not persistent. However, the existence of large sunk costs is inconsistent with

the fact that carriers serve many smaller routes nonstop on a seasonal basis and the fact that they

have responded to short-run demand spikes in 2020 by offering nonstop service temporarily on some

routes.47

A possible objection is that unobservables should reflect aspects of quality that are chosen

by carriers, and that, therefore, even if they persist for most observations, they would change in

response to a change in market structure caused by a merger. We have therefore also repeated the

analysis using the subset of markets where another carrier entered, exited or changed its service type

between 2005 and 2006. Our estimates of serial correlation, controlling for market fixed effects,

change very little.48 Therefore, while it is obviously possible for carriers to invest over time in

improving their market-specific quality, treating the demand and marginal cost unobservables of

the non-merging carriers as fixed appears a reasonable assumption for predicting the effects of a

merger over a one to two year period.

We view the assumption that no other carriers can enter the route as more restrictive, and

we will consider one analysis where we allow for an additional competitor. However, we view the

45Smaller estimates for connecting carriers may reflect how the small DB1 samples make small market shares, and
implied qualities and costs, quite volatile. If we use residuals from earlier years as instruments, to try to correct
for measurement error, the coefficient estimates for both demand and marginal costs are between 0.9 and 1.25 for
connecting carriers.

46We have identified all cases where the named carriers added nonstop service, other than through mergers, after
Q1 2001 but before 2006, and then followed their service choices over subsequent quarters. On average, these carriers
maintained nonstop service for 27 consecutive quarters.

47Wall Street Journal article, October 6, 2020, “How Are Legacy Airlines Surviving Covid-19? By Borrowing from
the Low-Cost Playbook”.

48For example, with fixed effect controls, the demand and marginal cost serial correlation coefficients for nonstop
carriers are 0.899 (s.e. 0.047) and 0.826 (s.e. 0.049) respectively.
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assumption as being reasonable, given the computational costs of the alternative (see footnote 50),

because, over the period from the first quarter of 2005 to the first quarter of 2008, 86.2% of carriers

that began nonstop service on a route offered connecting service in the previous quarter, and,

after mergers affecting nonstop carriers, three-quarters of rivals that began nonstop service were

previously connecting carriers.

Method: The Simulation of Conditional Distributions.

To calculate equilibrium post-merger service choices, we need to infer the qualities and costs that

rival carriers would have if they changed their service choices (i.e., qualities and costs that are not

observed in the data). We do this by forming “conditional distributions” of qualities, including

the route-level demand effect, and costs which are consistent with both the estimates and pre-

merger service choices.49 The natural interpretation of the conditional distributions is they are

posteriors with the estimated distributions treated as priors, with the conditioning being on the

service choices, prices and market shares observed in the data.

We form the conditional distributions using the following steps. We first specify a discrete set

of possible values for the route-level demand effect. For each value, we calculate the qualities and

marginal costs implied by observed prices and market shares for the chosen service types. We

then take draws of the remaining random components of the model (carrier qualities and marginal

costs for the non-chosen service types, and the fixed costs of nonstop service) from their estimated

distributions and, for each set of draws, we keep (accept) those draws which would support the

observed service choices as an equilibrium outcome. We weight the accepted draws using the

estimated densities of the route-level demand effect and the implied carrier qualities and costs for

chosen service types, to form the conditional joint distribution of the route-level demand effect,

49We note that one could also choose to condition, for example, on the profitability of the merger, and to also form
a conditional distribution for the merger synergy.
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carrier qualities, marginal costs and fixed costs for all of the carriers in the market.50

We illustrate the effect of conditioning in Figure 2 for the Philadelphia (PHL)-San Francisco

(SFO) route, one of the nonstop duopoly routes affected by the United/US Airways merger. The

solid line in the left panel shows the estimated density of the route-level demand effect, and the

histogram shows the simulated marginal conditional density (50,000 simulation draws). The con-

ditional distribution has a lower mean, reflecting the fact that the number of observed passengers,

across all carriers, is relatively low (combined market share is 28.3%, averaged across directions)

given market size and the observed covariates. As a comparison, the mean of the conditional dis-

tribution of the demand effect for Las Vegas-Miami, where combined market shares equal 42.5%,

is 0.5.

Nonstop quality is the sum of a carrier’s connecting quality and the incremental quality of

nonstop service. The lines in the middle panel show the density of nonstop quality for passengers

originating at SFO for United and American based on the estimates (i.e., not conditioning on what is

observed). United’s expected quality is higher, because of its high presence at SFO. The histogram

shows the conditional density for American’s nonstop quality. This distribution is similar, but

with a slightly lower mean, than the distribution implied by the estimates. The intuition is that

given observed shares and prices and the likely value of the random effect, we need to shift our

expectation of American’s nonstop quality down, by a small amount, to explain why it chooses

connecting service. The posteriors for carrier quality would be identical to those implied by the

estimates in a limited information model. The third panel shows the densities for the fixed cost of

nonstop service for American and US Airways. US Airways has a lower expected effective fixed cost

because of its domestic and international hubs at PHL. The estimated and conditional distributions

50The acceptance rate drops when more unobserved variables are added to the model or we add additional players.
For example, if we considered a model where carriers choose between {do not enter, enter connecting, enter nonstop},
as in Li et al. (2015), we would have to calculate the conditional distribution of four qualities, two marginal costs
and two fixed costs for each carrier that does not enter.
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for American’s fixed costs look essentially identical.

We note that the step of forming conditional distributions of qualities and costs that are con-

sistent with observed outcomes in the data, is an important difference between our counterfactual

analysis and the one provided by CMT. CMT estimate a full information entry and price competi-

tion model, and then simulate market outcomes, and perform counterfactuals by implementing an

American/US Airways merger using the simulated data, where all of the demand and cost draws

are known to the researcher, including for carriers that do not enter. Their counterfactuals tell us

what happens in simulated markets, not actual markets. Instead, we take the approach that an

agency has to take when analyzing a proposed merger, where they need to predict what will happen

in one or more actual markets, with known competitors and observed market shares, if a merger

takes place. Our approach is also the only way to make sure that our predictions are consistent

with those from a standard fixed product merger simulation, which predicts changes from observed

(not simulated) prices and market shares.

Results.

Predicted Effects of a United/US Airways Merger. We start by presenting our results for

the United/US Airways merger on four routes where the merging carriers were nonstop duopolists

and American was a connecting competitor, so that we can connect our discussion to our calculation

of conditional distributions for the Philadelphia-San Francisco route, and our discussion of the

proposed service remedy where these are the affected routes.

The upper panel in Table 8 presents results under our baseline merger assumption. We expect

the merged firm’s prices to increase by 8.3% on these routes if service types are held fixed with a

significant predicted decline in consumer surplus. Such predictions would usually lead an antitrust

agency to challenge a merger unless offsetting synergies or repositioning are likely.
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The second row reports our predictions when we allow rivals’ service types to change after the

merger, using 1,000 draws from the conditional distributions for each market. The expected number

of rivals initiating nonstop service, a measure of the likelihood of repositioning, is small, leading

to the result that, in expectation, the merged carrier’s price increases by $41 (7.8%). We also find

that the merger is, on average, profitable for the merging firm despite the repositioning that takes

place, with its profits increasing by an average of $279k (s.e. $78k) per route. We will return to

rows 3 and 4 below.

The lower panel (rows 5 and 6) report the results under the best case assumption. As Newco

now tends to have slightly lower marginal costs, the predicted price increase is smaller, but there

is also less repositioning by rivals. The merger now appears to be much more profitable, raising

profits by an average of $1.1m (s.e. $85k) per route.

To understand the predictions for the baseline assumption, Table 9 provides more detail for the

PHL-SFO route. On this route, United, the lower average presence carrier that is assumed to be

eliminated by the merger, has a particularly large share, so that the merger potentially creates a

significant opportunity for a connecting carrier that launches nonstop service. The results in the

table use 5,000 draws so we can measure the probability of different outcomes accurately.

For two-thirds of the draws, no connecting rival launches nonstop service, and the merged

carrier’s price increases by 9.5% (from the pre-merger average) and its market share falls by 38%.

The non-merging carriers, with small connecting shares pre-merger, increase their prices slightly

and double their combined market share. Reflecting the loss of a large carrier, consumer surplus

falls by an average of $72.91 per pre-merger traveler.

The remaining columns show what happens when one of American or Delta launch nonstop

service, which are the most common outcomes involving repositioning (for 0.9% of draws more than

one rival launches nonstop service). The increased competition reduces (but does not eliminate)

35



the equilibrium price increase for US Airways, and the new nonstop carrier usually has a market

share that is significantly smaller than United’s prior to the merger, causing consumer surplus to

fall by around $30 per pre-merger traveler in both cases. Repositioning by rivals, when it happens,

does tend to make the merger unprofitable for this route: for example, the merged firm’s profits

fall by $920k when American becomes nonstop.51

This route provides an example where there can be multiple equilibrium outcomes in the coun-

terfactuals depending on timing assumptions about service choices. For example, there are 27

(out of 5,000) draws where either American launching nonstop service or Delta launching nonstop

service (but not both) are equilibrium outcomes. However, the different outcomes typically have

very similar welfare implications. For example, the average within-draw-across-outcome standard

deviation in the predicted US Airways price is $3.

Predicted Effects Using Alternative Assumptions About Rival Qualities. Rows 3-4 of

the upper panel of Table 8 show what happens if we make assumptions about rivals’ qualities

and costs that may not be consistent with their pre-merger service choices. We make the baseline

assumptions about the merger.52

Row 3 uses new draws from the estimated (i.e., not conditional) cost and incremental nonstop

quality distributions for the nonstop qualities and costs of the connecting carriers. We therefore

account for differences in the observed characteristics of the connecting carriers, but do not account

for the additional information in pre-merger service choices. Row 4 assumes that if any connecting

rival becomes nonstop then it would have the average quality and marginal costs of the merging

nonstop carriers and draw its fixed cost from a distribution that has a mean equal to the average of

51Using the best case assumption, there is no repositioning for 78% of draws (rather than 65%), US Airways’s price
increases by an average of 4.3% (rather than 6.4%) when there is no repositioning and the merger is only marginally
unprofitable when repositioning occurs.

52The results are similar if we make the best case assumption about the merger: for example, the expected number
of carriers launching nonstop service are 0.46 (row 3) and 2.4 (row 4), rather than 0.52 and 2.6.
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the means for the merging carriers. This approach ignores observable differences between carriers.53

In both cases, we continue to draw the route-level demand effect from its conditional distribution

and we use the qualities and marginal costs for observed service types that are implied by observed

prices and market shares, so that we can isolate the effects that arise from making alternative

assumptions about how competitive connecting rivals will be if they launch nonstop service.54

Compared to our preferred results using the conditional distributions, the estimated distribu-

tions imply it is more likely that rivals will launch nonstop service (the expected number of nonstop

launches is 0.52, rather than 0.1), leading to a smaller expected price increase, and a smaller, sta-

tistically insignificant, decrease in consumer surplus of $16.22 per pre-merger traveler (s.e. $11.22).

These results also imply that the merger is likely to be unprofitable: average profits fall by $105k

(s.e. $150k), compared to the $279k (s.e. $78k) increase using the conditional distributions.

Assuming that connecting carriers can offer nonstop service on similar terms to the merging

parties leads to a prediction that, on average, 2.6 of them would launch nonstop service55 and

that, because consumers prefer nonstop service, consumer surplus is predicted to increase after

the merger. However, if we use the same assumption to solve for equilibrium outcomes before

the merger, we often predict that several connecting carriers should have chosen to offer nonstop

service (e.g., American’s probability of launching nonstop service would be 0.6 pre-merger), which

is inconsistent with the observed data. This illustrates the importance of considering whether

assumptions about the post-merger competitiveness of repositioning firms, or new entrants, are

consistent with their pre-merger choices.

53One might view this approach as reflecting the District Court’s approach in United States v. Waste Management,
Inc. (743 F.2d 976, 978, 983-84, 2nd Cir. 1984) where it held that it was sufficient to consider only whether potential
entrants would face higher entry barriers than the merging parties.

54A rationale for using the conditional distribution of the route-level demand effect is that we include this component
of the model to address the fact that our market size measure may be imperfect. The parties and the agencies would
likely be able to construct a better measure in a merger investigation.

55If we assumed that connecting carriers would be similar to the eliminated carrier, rather than the average of the
merging carriers, we would expect 1.5 of them to launch nonstop service.
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Predicted Effects of Completed Legacy Mergers on Nonstop Duopoly Routes. The

upper panel of Table 10 summarizes our baseline merger assumption predictions for repositioning

and post-merger prices for the 17 nonstop duopoly routes affected by the consummated mergers,

under our different assumptions about the nonstop quality and costs of connecting carriers.

The qualitative patterns are very similar to Table 8, although magnitudes vary across mergers

reflecting differences in conditions across routes. When we use our preferred conditional distri-

butions, we expect 0.18 rivals to launch nonstop service on each affected route, and the merged

carriers’ prices are predicted to increase by an average of just under 10%, which is only 2 percentage

points smaller than if service types are held fixed. Using the estimated distributions we predict

more than three times as much repositioning by rivals and smaller, although still economically

significant, price increases.56 If we assume that connecting carriers could provide nonstop service

with similar quality and costs to the merging parties, we predict that, on average, the mergers

would have no anti-competitive effects.

Comparing Predictions to What Happened After Legacy Mergers on Nonstop Duopoly

Routes.

It is natural to compare these predicted changes to what we observe actually happening after these

mergers, albeit with the caveat that market conditions may have changed between 2006, the year

of our analysis, and the year that the mergers were consummated.

Appendix A.4 uses panel data to estimate what happened to rivals’ service choices, and the

prices and shares of the merging carriers after the three completed legacy mergers, comparing

routes where the parties were nonstop duopolists prior to the merger, with routes where only one

of the merging carriers had a significant market share.57 We summarize the findings here. On

56Under the best case merger assumption, we predict two-and-a-half times as much repositioning using the estimated
distributions, so that the comparisons we make below to repositioning in the data still hold.

57Estimated changes may be affected by the choice of control group or time window, as illustrated by the contrasting
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the nonstop duopoly routes, the merged carrier always maintained nonstop service. Within two

years of the merger closing (the Department of Transportation explicitly used two years when

considering repositioning (Keyes, 1987), a rival launched nonstop service on no routes, out of five,

for Delta/Northwest, one route, out of five, for United/Continental and three routes, out of six, for

American/US Airways.58 There were two additional nonstop launches in the third year following

these mergers. The Appendix also presents analyses of changes in the prices and market shares of

the merging firms on routes where the merging firms were nonstop duopolists for three years before

the merger, using a comparison set of routes where one of the parties was nonstop and the other

was either absent or a connecting carrier with a small share. On routes where no rivals initiated

nonstop service, we find that the merged carrier increased its prices by an average of 10%, with

its number of local passengers (i.e., those only flying the route itself) falling by almost 30%. On

routes where rival nonstop service was launched, the merged carriers’ prices did not rise, although

they did lose market share, presumably reflecting the new competition. These patterns suggest

that rivals tend not to launch nonstop service because they would not be competitive, rather than

because the merged carrier enjoys large synergies.

These patterns are broadly consistent with the predictions of our model when we use draws

from the conditional distributions of qualities and costs for the rival carriers. In particular, our

analysis predicts that, on average, 0.18 rival carriers will initiate nonstop service, compared with

0.25 in the data, and that prices will increase by around 12% when there is no repositioning,

compared with 11% in the data. It is also the case that we observe the most nonstop launches after

the American/US Airways merger, consistent with our prediction. Our predictions of changes in

merging carrier market shares when there is no repositioning are also close to the data. Although the

numbers of mergers and routes are too small to claim that the close match proves that our approach

price effects found by Hüschelrath and Müller (2015) and Carlton et al. (2017) after recent mergers. Ultimately any
control group is likely to be imperfect when analyzing a network industry.

58There is no overlap in the routes across these mergers.
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is correct, we view the match as at least encouraging. It stands in contrast to the conclusion of

Peters (2006) that fixed product merger simulations poorly predict outcome changes after airline

mergers.

Predictions for Markets with Additional Nonstop Rivals Pre-Merger.

Merger simulations with fixed products also indicate that prices would rise significantly on routes

where the merging parties are nonstop but have at least one nonstop rival (there is one route

with two nonstop rivals). Table 11 presents our predictions for these routes. When we simulate

counterfactuals allowing for repositioning, we assume that the merged firm will be nonstop and

make the same assumptions about connecting rivals that we made for nonstop duopoly routes.

However, we also now endogenize the service choice of the nonstop rival(s). The nonstop quality

and marginal costs of this type of carrier are observed, but we need to make assumptions about

the quality and marginal costs of its connecting service, and its fixed costs of providing nonstop

service.

When we use conditional distributions, we predict that the nonstop rival(s) will always continue

to provide nonstop service and that connecting carriers will rarely introduce nonstop service. As a

result, predicted price changes are almost identical to those where service types are assumed fixed.

This is consistent with our earlier results. However, differences to our earlier results emerge for the

other assumptions, because it becomes likely that the nonstop rival, which is usually quite an effec-

tive nonstop competitor, may cease nonstop service and this type of repositioning can lead to price

increases. For example, a nonstop rival ceases nonstop service for around one-third of simulations

in the results reported in the final (“Average of Merging Parties”) row of the table. As a result,

we now predict significant price increases under all three approaches, and the largest predicted

prices increases and the greatest probability of post-merger nonstop monopoly are when we use the

40



estimated distributions. Therefore, although the intuition that the conditional distributions will

tend to predict the largest prices increases when nonstop duopolists merge is fairly clear, there are

additional nuances for other market structures that are relevant for merger analysis.

8 Performance of Alternative Remedies.

Remedies are often negotiated when only a small part of a transaction is likely to have anticompeti-

tive effects. The agencies have a well-known preference for structural remedies, such as divestitures,

but, in some circumstances, they also accept behavioral remedies or remedies that involve some

ongoing relationship between the merging firm and third parties.59 We use our model to consider,

in a stylized way, the effectiveness of two different types of remedies that have been proposed or

used in airline mergers.

The Service Remedy Proposed in the United/US Airways Merger. The results presented

so far suggest that when rivals launch nonstop service, the merged carrier can only increase prices by

a small amount. This might be interpreted as implying that the remedy proposed in the United/US

Airways merger, where American would guarantee to initiate nonstop service on routes where the

parties were nonstop duopolists (see footnote 37), so that the number of nonstop carriers would not

have changed, would have been effective. However, this logic implicitly assumes that American’s

nonstop service would constrain the merged carrier’s prices even when it is unprofitable.60

The first two rows of Table 12 repeat the results from Table 8 for the four routes where United

and US Airways were nonstop and American was a connecting competitor. The third row repeats

the analysis under the remedy so that, whatever its draws from the conditional distribution, Amer-

59See September 2020 Department of Justice “Merger Remedies Manual”
(https://www.justice.gov/atr/page/file/1312416/download, accessed November 11, 2020).

60The parties did not claim that nonstop service on the affected routes would be profitable for American: instead
the attraction for American was that it would receive a package of assets on the East Coast if the merger was
completed.
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ican is nonstop and other carriers then make their service choices taking this into account. We

see that the effect of the remedy on expected post-merger prices is small. The insignificance of

American as a nonstop competitor when its nonstop service is not profitable is also illustrated by

how other rival carriers’ service decisions are largely unaffected by the remedy.

Figure 3(a) provides additional insight into what happens. The histogram shows the distribution

of the difference between nonstop and connecting profits for American on the PHL-SFO route. For

simplicity, we draw the figure assuming that American knows no other connecting carriers will

launch nonstop service. The line on the figure shows the median simulated post-merger price

increase for US Airways (relative to the average of United’s and US Airways’s pre-merger prices)

when we force American to provide nonstop service given this level of profitability (the shaded area

indicates the interquartile range generated by our simulations). There is a monotonic relationship

between American’s profitability and its effectiveness at reducing increases in the US Airways’s

prices, and there is only a significant constraining effect on those prices when nonstop service is at

least close to being profitable for American.

To illustrate the effects of our assumption that demand and cost shocks are known when making

service choices (“full information”), Figure 3(b) shows the same figure assuming that American has

no information about its quality or marginal cost unobservables when making its service choice (for

comparability, we assume American does know its fixed costs and the qualities and costs of other

carriers). The variance of the (expected) profit distribution is reduced, as it now reflects only the

distribution of fixed costs. As fixed costs will not affect the prices that carriers set, there is no link

between the level of profit that American expects when it launches nonstop service and how much

this will constrain the market power of the merging carriers.

42



The Effect of Adding An Additional Low-Cost Competitor. We consider the effects of

introducing an additional low-cost competitor as an alternative remedy. The Department of Justice

allowed the United/Continental and American/US Airways mergers to proceed when the parties

agreed to divest slots and gates to low-cost carriers at major airports.61 The aim of these divestitures

was to increase competition at the affected airports. Although our model does not formally include

slots, we can use it to ask the question of whether the addition of a low-cost carrier as a competitor

would offset the anticompetitive effects of a merger.62 As the new carrier was not on the route prior

the merger, we assume that its quality and cost draws are not selected (i.e., they are new draws

from the estimated distributions), and that it takes on the observed characteristics of the average

“Other LCC” carrier in the data. We then repeat our conditional distribution counterfactuals for

routes where the merging parties were nonstop duopolists, assuming that the new carrier is last in

the sequential order.

Table 13 compares the predictions of price and the number of new nonstop carriers (in total)

when we add the new competitor to our baseline predictions for the nonstop duopoly routes. The

pattern in the results varies across the mergers, reflecting differences in market structure. For

example, on the two routes where the merged firms are the only competitors, adding the new

carrier has a significant pro-competitive effect. However, the addition of a new rival, by reducing

profitability of the remaining carriers, can actually lead to fewer carriers initiating nonstop service

than in the baseline. Averaging across the 24 routes, the remedy reduces, but does not eliminate,

the expected post-merger price increase (the average increase is 5% rather than 11%).

For the four United/US Airways routes where American offers connecting service, we can com-

61The settlement in the American/US Airways case also required divestitures of slots at Washington Reagan and
New York LaGuardia, and of ground facilities at seven airports. The settlement in United/Continental required
divestitures at Newark.

62Our stylized analysis will miss the fact that the additional LCC and the merging parties will need to choose how
to allocate their scarce slots across routes. Park (2020) explicitly includes this type of slot allocation decision for a
single carrier at a single airport.
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pare the effectiveness of the two remedies. We see that they are roughly equally effective in the

sense that the expected post-merger prices are similar ($564.66 with an additional LCC competitor

compared to $566.34 with the service remedy). We also investigated what would happen if the

additional LCC is a stronger competitor, by increasing the assumed presence of the new carrier

from 0.17 to 0.5 (which would be equivalent to the new carrier establishing some type of focus

airport presence at both endpoints). In this case, the new carrier is more likely to add nonstop

service, and the merged carrier’s expected price increase is smaller, but still economically signifi-

cant. For example, on the four United/US Airways routes where American was a competitor the

expected post-merger price is $557.70. Therefore, we conclude that neither remedy is necessarily

effective at preventing anticompetitive harm from the merger on nonstop duopoly routes, although

it is plausible that a remedy that introduces more competition to an airport would be preferred

because of the potential benefits that it would bring to other routes.

9 Conclusions

We have developed a model of endogenous service choices and price competition in airline markets,

assuming that carriers have full information about demand and marginal costs when they make

their service choices. In this framework, carriers will tend to choose the service type in which they

are most competitive, and this naturally has implications for how likely they will be to change

their service types in response to a change in their competitive environment, such as when two

rivals merge. Although it will not be the right assumption for all industries or all counterfactu-

als, we believe the full information assumption is the natural one to use when trying to predict

product repositioning by experienced market participants in an environment where demand and

marginal cost unobservables are persistent, and when trying to understand whether repositioning

will sustainably limit market power after a merger.
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We make two contributions. First, we show how a full information model can be estimated

without an excessive computational burden. This is a significant result for the academic literature,

as researchers have often chosen to estimate models where firms do not have any information on

the realization of demand and marginal cost shocks when entry or positioning decisions are made in

order to avoid the computational burden that is perceived to be involved with estimating discrete

entry/positioning choice and pricing games simultaneously.

Our second, and more important, contribution comes from performing a set of counterfactuals

which try to systematically assess the likelihood and sufficiency of repositioning, consistent with the

Horizontal Merger Guidelines. We show how to account for the selection on unobserved demand and

marginal cost shocks that is implied by assuming that the observed data comes from equilibrium

play prior to the merger, and we find that doing so is important. When we take selection into

account we predict that rivals are much less likely to launch nonstop service when nonstop duopolists

merge, and we predict larger average price increases and significant decreases in consumer surplus.

We find that our predictions are consistent with what has been observed after actual airline mergers

only when we account for selection. These results are important both for academic research, where

we are not aware of this type of conditioning being used previously, and for the analysis of mergers

at antitrust agencies, where it is common to perform merger simulations and other counterfactuals,

even when parameters come from documents, expert testimony or simple calibrations rather being

econometrically estimated.

As we have tried to make clear, many of our assumptions are strong and it would be valuable to

investigate how relaxing them would affect the predictions of the model and our ability to explain

what happens after mergers. One direction would be to allow for additional unobservables that

are private information, as well as unobservables that are known to all firms throughout the game.

Another important direction would be to include dynamics that would allow unobservables to evolve
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over time, possibly due to endogenous investments, while relaxing the usual assumption of dynamic

models that unobservables are independent across periods.
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Tables and Figures

Table 1: Summary Statistics for the Estimation Sample

Numb. of 10th 90th

Obs. Mean Std. Dev. pctile pctile
Market Variables
Market Size (directional) 4,056 24,327 34,827 2,794 62,454
Num. of Carriers 2,028 3.98 1.74 2 6

Num. of Nonstop 2,028 0.67 0.83 0 2
Total Passengers (directional) 4,056 6,971 10,830 625 17,545
Nonstop Distance (miles, round-trip) 2,028 2,444 1,234 986 4,384
Business Index 2,028 0.41 0.09 0.30 0.52

Market-Carrier Variables
Nonstop Indicator 8,065 0.17 0.37 0 1
Price (directional, round-trip $s) 16,130 436 111 304 581
Share (directional) 16,130 0.071 0.085 0.007 0.208
Airport Presence (endpoint-specific) 16,130 0.208 0.240 0.038 0.529
Indicator for Low Cost Carrier 8,065 0.22 0.41 0 1
≥ 1 Endpoint is a Domestic Hub 8,065 0.13 0.33 0 1
≥ 1 Endpoint is an International Hub 8,065 0.10 0.30 0 1
Connecting Distance (miles, round-trip) 7,270 3,161 1,370 1,486 4,996
Predicted Connecting Traffic 1,036 8,664 7,940 2,347 52,726
(at domestic hubs)
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Table 2: Distribution of Market Structures in the Estimation Sample

Number of Nonstop Number of Percentage of Average Number of
Competitors Sample Markets Sample Passengers Connecting Carriers

0 1,075 15.0% 3.98
1 614 33.6% 2.91
2 277 35.5% 2.07
3 60 15.2% 1.25
4 2 0.10% 0

Table 3: Moments Used in Estimation

Market Level (ym) Market-Carrier Level (yjm)
Endogenous Outcomes Endogenous Outcomes

Exogenous Variables (Z) 7 per market 5 per carrier Row Total

Market-Level Variables 49 315 364
(Zm) (7 per market)

Carrier-Specific Variables 280 200 480
(Zjm) (up to 5 per carrier)

“Other Carrier”-Specific 315 225 540
Variables (Z−jm)
(5 per “other carrier”)

Column Total 644 740 1,384

Notes: Zm = {constant, market size, market (nonstop) distance, business index, number of low-cost
carriers, tourist dummy, slot constrained dummy.}
Zjm = {presence at each endpoint airport, our measure of the carrier’s connecting traffic if the route
is served nonstop, connecting distance, international hub dummy} for named legacy carriers and for
Southwest (except the international hub dummy). For the Other Legacy and Other LCC Carrier we use
{presence at each endpoint airport, connecting distance} as we do not model their connecting traffic.
Carrier-specific variables are interacted with all market-level outcomes and carrier-specific outcomes for
the same carrier.
Z−jm = {the average presence of other carriers at each endpoint airport, connecting passengers, connecting
distance, and international hub dummy} for each other carrier (zero if that carrier is not present at all in
the market).
ym = {market level nonstop price (both directions), connecting price (both directions), sum of squared
market shares (both directions), and the square of number of nonstop carriers}.
yjm = {nonstop dummy, price (both directions), and market shares (both directions)} for each carrier.
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Table 4: Parameter Estimates: Demand

(1) (2) (3) (4)
Independent Correlation Correlation Nonstop and

Route-Level Parameters Unobservables Specific. 1 Specific. 2 Connecting
Demand RE S.D. σRE Constant 0.311 0.538 0.469 0.369
[−2, 2] (0.138) (0.151) (0.122) (0.135)
Nesting Mean βτ Constant 0.645 0.634 0.640 0.617
Parameter (0.012) (0.013) (0.015) (0.013)
[0.5, 0.9] S.D. στ Constant 0.042 0.005 0.050 0.020

(0.010) (0.010) (0.008) (0.009)
Price Mean βα Constant -0.567 -0.542 -0.612 -0.602
Coefficient (0.040) (0.045) (0.031) (0.041)
(price in $100 units) Business 0.349 0.189 0.435 0.382
[−0.75,−0.15] Index (0.110) (0.118) (0.088) (0.113)

S.D. σα Constant 0.015 0.043 0.013 0.035
(0.010) (0.011) (0.013) (0.010)

Carrier-Level Parameters
Carrier Mean βCON Legacy 0.376 0.322 0.465 0.291
Connecting Constant (0.054) (0.064) (0.047) (0.054))
Quality LCC 0.237 0.336 0.150 0.223
[−2, 10] Constant (0.094) (0.086) (0.094) (0.113)

Presence 0.845 0.674 0.524 0.835
at Origin (0.130) (0.125) (0.127) (0.196)

S.D. σCON Constant 0.195 0.208 0.201 0.255
(0.025) (0.027) (0.028) (0.026)

Incremental Mean βNS Constant 0.258 0.192 0.560 0.519
Quality of (0.235) (0.214) (0.221) (0.181)
Nonstop Distance -0.025 -0.057 -0.009 -0.061
Service (0.034) (0.037) (0.036) (0.044)
[0, 5] Business 0.247 0.841 -0.396 0.288

Index (0.494) (0.455) (0.479) (0.372)
S.D. σNS Constant 0.278 0.241 0.213 0.257

(0.038) (0.042) (0.034) (0.045)

Notes: standard errors, in parentheses, are based on 100 bootstrap replications where 2,028 markets are sam-
pled with replacement, and we draw a new set of 1,000 simulation draws (taken from a pool of 2,000 draws)
for each selected market. Distance is measured in thousands of miles. See Table 5 for estimates of the cost and
covariance parameters. The supports of the random variables are indicated in square brackets. For example,
the nesting parameter can lie between 0.5 and 0.9.
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Table 5: Parameter Estimates: Marginal Costs, Fixed Costs, Network Effects and Covariances

(1) (2) (3) (4)
Independent Correlation Correlation Nonstop and

Unobservables Specific. 1 Specific. 2 Connecting
Carrier Mean βMC Legacy 1.802 1.350 1.847 1.389
Marginal Constant (0.168) (0.146) (0.190) (0.229)

Costs LCC 1.383 0.961 1.344 1.100
($100 units) Constant (0.194) (0.169) (0.207) (0.247)

[0, 6] Conn. X 0.100 0.443 0.040 0.629
Legacy (0.229) (0.211) (0.251) (0.295)

Conn. X -0.165 0.288 0.140 0.388
LCC (0.291) (0.255) (0.273) (0.322)

Conn. X -0.270 -0.213 -0.228 0.051
Other Leg. (0.680) (0.166) (0.160) (0.188)

Conn. X 0.124 0.046 -0.173 0.171
Other LCC (0.156) (0.152) (0.167) (0.168)

Nonstop 0.579 0.823 0.510 0.865
Distance (0.117) (0.101) (0.128) (0.155)

Nonstop -0.010 -0.044 -0.001 -0.059
Distance2 (0.018) (0.016) (0.019) (0.023)

Connecting 0.681 0.661 0.675 0.524
Distance (0.083) (0.096) (0.091) (0.083)

Connecting -0.028 -0.018 -0.026 0.000
Distance2 (0.012) (0.013) (0.013) (0.012)

S.D. σMC Constant 0.164 0.191 0.143 0.148
(0.021) (0.016) (0.018) (0.020)

Carrier Fixed Mean βF Legacy 0.887 0.897 0.855 1.104
Costs Constant (0.061) (0.056) (0.075)

($1m. units) LCC 0.957 1.008 0.857 0.922
[0, 5] Constant (0.109) (0.118) (0.100) (0.124)

Slot Const. 0.568 0.424 0.514 0.411
Airport (0.094) (0.099) (0.085) (0.105)

S.D. σF Constant 0.215 0.275 0.220 0.195
(0.035) (0.029) (0.030) (0.033)

Carrier Network Dom. Hub -0.058 -0.302 -0.205 0.000
Variables (offset Dummy (0.127) (0.157) (0.193) (0.212)

fixed costs) Log -0.871 -1.000 -0.602 -0.972

̂(Conn. Traff.) (0.227) (0.207) (0.257) (0.287)

Intl. Hub -0.118 -0.144 -0.107 -0.261
(0.120) (0.090) (0.093) (0.137)

Covariances Incremental Nonstop Quality - 0.012 0.018 -
& Fixed Cost (0.010) (0.010)

Connecting Quality - - 0.006 -
& Connecting Marginal Cost (0.007)

Notes: see notes below Table 4. The Log(Predicted Connecting Traffic) variable is zero for routes that do not in-
volve a domestic hub, and for hub routes it is re-scaled with mean 0.52 and standard deviation 0.34. Supports are
in square brackets.
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Table 6: Model Fit: Predictions of Service Decisions at Raleigh-Durham

Number of Mean Presence at % Nonstop
Routes Route Endpoints Data Simulation

American 44 0.29 22.7% 22.8% (1.6%)
Continental 30 0.14 10.0% 10.0% (1.0%)
Delta 57 0.24 8.7% 14.8% (1.9%)
Northwest 22 0.18 9.1% 11.0% (1.2%)
United 25 0.12 4% 14.4% (1.9%)
US Airways 54 0.12 5.6% 9.4% (2.7%)
Southwest 48 0.30 12.5% 14.5% (4.3%)
Other Low Cost 25 0.08 4% 13.4% (4.9%)

Notes: Predictions from the model calculated based on twenty simulation draws from
each market from the relevant estimated distributions.
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Table 8: Predicted Effects of United/US Airways Merger in Four Nonstop Duopoly Markets
Allowing Repositioning By Rivals

Pre-Merger Exp. Numb. of Rivals Post-Merger Change in
United/US Launching Nonstop Service Merged Carrier Consumer

Counterfactual Airways Price American Others Price Surplus
Baseline Merger Assumption

1. Service Types $531.97 - - $576.18 -$48.07
Fixed (0.77) (1.69)

Allow Rival Service Changes
Connecting Rivals Nonstop Quality and Costs Drawn from:
2. Conditional Distns. $531.97 0.035 0.063 $573.37 -$42.96

(0.024) (0.055) (2.36) (4.88)

3. Estimated Distns. $531.97 0.190 0.325 $559.56 -$16.22
(0.062) (0.106) (5.08) (11.22)

4. Average of $531.97 0.678 1.915 $531.79 +$62.36
Merging Parties (0.062) (0.106) (1.97) (8.43)

Best Case Merger Assumption
5. Service Types $531.97 - - $562.82 -$37.76
Fixed (0.94) (1.77)

Allow Rival Service Changes
Connecting Rivals Nonstop Quality and Costs Drawn from:
6. Conditional Distns. $531.97 0.020 0.043 $560.73 -$33.80

(0.015) (0.042) (1.96) (4.00)

Notes: predictions with endogenous service choices are averages from 1,000 draws from the appropriate
distributions. Pre-merger prices are averages across the merging parties. Implementation of rows 3 and
4 explained in the text. Standard errors reported in parentheses.

Table 9: Predictions for the Philadelphia-San Francisco Market Allowing Repositioning By Rivals
Following a United/US Airways Merger

Carrier No Service Changes American Nonstop Delta Nonstop
(pre-merger service type, 3,267/5,000 Draws 570/5,000 Draws 483/5,000 Draws
price and share) Price Share Price Share Price Share
US Airways/Newco $691.53 15.4% $661.67 14.1% $661.46 14.0%
(NS, $649.74, 13.0%) (1.17) (0.0) (0.66) (0.1) (1.64) (0.1)

United - - - - - -
(NS, $613.54, 12.1%)

American $478.98 1.2% $554.64 8.1% $477.30 0.8%
(CON, $476.52, 0.5%) (0.05) (0.0) (9.70) (0.4) (0.07) (0.0)

Delta $666.89 0.6% $666.08 0.4% $550.98 7.9%
(CON, $665.77, 0.3%) (0.03) (0.0) (0.04) (0.0) (8.74) (0.5)

Northwest $307.35 3.5% $302.51 2.4% $302.47 2.4%
(CON, $300.60, 1.9%) (0.18) (0.0) (0.23) (0.1) (0.23) (0.1)

Other LCC $377.27 1.1% $375.82 0.7% $375.80 0.7%
(CON, $375.27, 0.6%) (0.06) (0.0) (0.07) (0.0) (0.07) (0.0)

Notes: predictions are averages from 5,000 draws from the conditional distributions. Standard er-
rors in parentheses based on the same bootstrap estimates used for the parameter estimates. The
merger assumed to eliminate United (lower presence carrier). NS denotes nonstop and CON denotes
connecting pre-merger.
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Table 12: Predicted Effects of the American Service Remedy in United/US Airways Merger

Pre-Merger Exp. Numb. of Rivals Post-Merger Change in
Service Change United/US Launching Nonstop Service Merged Carrier Consumer
Considered Airways Price American Other Rivals Price Surplus

No Remedy
1. Service Types Fixed $531.97 - - $577.72 -$48.07
Fixed
2. Allow Rival Service $531.97 0.035 0.063 $573.37 -$42.96
Changes (Condit. Distns.)

American Nonstop Remedy
3. Allow Rival Service $531.97 1 0.030 $566.34 -$31.29
Changes (Condit. Distns.)

Notes: see notes to Table 8. The merger is assumed to eliminate the party with the lowest presence on the
route. Consumer surplus changes measured per pre-merger traveler. For American, the expected number of
rivals launching nonstop service is the probability that American launches nonstop service. Standard errors
not reported.

Table 13: Predicted Effects of a Remedy When an Additional Other Low-Cost Carrier is
Added as a Competitor on Nonstop Duopoly Routes

Post-Merger Predictions with Repositioning
Pre-Merger Rivals

Pre-Merger Pre-Merger Rivals + Addn. LCC
Merger Price Exp. New NS Price Exp. New NS Price
Delta/Northwest $ 566.39 0.07 $590.34 0.05 $556.69
(2 routes)

United/Continental $503.75 0.14 $547.65 0.14 $530.03
(4 routes)

American/US Airways $459.13 0.21 $511.33 0.25 $492.24
(11 routes)

All United/US Airways $479.32 0.08 $546.74 0.32 $496.18
(7 routes)

United/US Airways $531.97 0.10 $573.37 0.14 $564.66
with AA connecting (4 routes)

Average $481.40 0.15 $ 534.30 0.24 $505.03
(24 routes)

Notes: see notes to Table 8. The additional LCC carrier receives unconditional draws from the es-
timated distributions, has the characteristics of the average “Other LCC” carrier (e.g., presence 0.17
at both endpoints), and is assumed to make its service choice last in the sequential move order. The
merger is assumed to eliminate the party with the lowest presence on the route. Standard errors are
not reported.
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Figure 1: Timing of the Game

1. Carriers observe
variables and
unobservables

affecting demand,
and marginal and
fixed costs of all

carriers.

2. Carriers
sequentially

choose nonstop
or connecting

service.
Service choices

are non-directional.

3. Carriers
simultaneously

choose
prices on

directional routes.

4.Demand and
profits

realized.
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Figure 2: Selection of Marginal Conditional Distributions for Philadelphia-San Francisco

Figure 2 Legend: left panel: solid line: estimated, histogram: conditional. middle panel: dotted

line: United estimated, solid line: American estimated, histogram: American conditional right

panel: dotted line: US Airways estimated, solid line: American estimated, histogram: American

conditional
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Figure 3: Distribution of American Incremental Profits (in $00s) from Nonstop Service on PHL-SFO
and the Predicted Increase in the Merged Carrier’s Price if American Launches Nonstop Service
(Relative to Pre-Merger Average Prices) Given American’s Profitability. The grey area marks the
interquartile range of price outcomes.
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Figure 3 Legend: indicated on the axes of each figure
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ONLINE APPENDICES TO “REPOSITIONING AND

MARKET POWER AFTER AIRLINE MERGERS” BY LI,

MAZUR, PARK, ROBERTS, SWEETING AND ZHANG

A Data Appendix

This Appendix complements the description of the data in Section 3 of the text.

A.1 Sample Construction and Variable Definitions.

Selection of markets. We use 2,028 airport-pair markets linking the 79 U.S. airports (excluding

airports in Alaska and Hawaii) with the most enplanements in Q2 2006. The markets that are

excluded meet one or more of the following criteria:

� airport-pairs that are less than 350 miles apart as ground transportation may be very com-

petitive on these routes;

� airport-pairs involving Dallas Love Field, which was subject to Wright Amendment restric-

tions that severely limited nonstop flights;

� airport-pairs involving New York LaGuardia or Reagan National that would violate the so-

called perimeter restrictions that were in effect from these airports63;

� airport-pairs where more than one carrier that is included in our composite “Other Legacy”

or “Other LCC” (low-cost) carriers are nonstop, have more than 20% of non-directional traffic

or have more than 25% presence (defined in the text) at either of the endpoint airports. Our

rationale is that our assumption that the composite carrier will act as a single player may be

especially problematic in these situations64; and,

� airport-pairs where, based on our market size definition (explained below), the combined

market shares of the carriers are more than 85% or less than 4%.

63To be precise, we exclude routes involving LaGuardia that are more than 1,500 miles (except Denver) and routes
involving Reagan National that are more than 1,250 miles.

64An example of the type of route that is excluded is Atlanta-Denver where Airtran and Frontier, which are included
in our “Other LCC” category had hubs at the endpoints and both carriers served the route nonstop.
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Seasonality. The second quarter is the busiest quarter for airline travel, and one might be con-

cerned that seasonality affects our measures of passenger flows and service choices, and therefore

our estimates. We do not believe that this is a first-order concern for our sample of relatively

large markets. The website http://www.anna.aero (accessed May 29, 2018) provides a formula

for measuring the seasonality of airport demand (SVID) which we have calculated for all of the

airports in our sample using monthly T100 data on originating passengers.65 The website classifies

seasonality as “excellent” if SVID is less than 2 or “good” if the SVID is between 2 and 10, on the

basis that seasonality is costly for an airline or an airport because it requires changes in schedules.

All of the airports in our sample are within these ranges, with the highest (most seasonal) values

for Seattle (2.4), New Orleans (2.8), Palm Beach (5.2) and Southwest Florida (9.9). In contrast,

a non-sample airport with very seasonal demand, Gunnason-Crested Butte (GUC), has an SVID

of 65. Applying SVID on a route-level to quarterly traffic, only one sample route (Minneapolis to

Southwest Florida) has an SVID greater than 10 (19), and the 95th percentile is 3.12.

We also find little evidence of seasonality if we identify routes which a carrier serves nonstop in

our data and in the second quarter of 2005, but which they did not serve nonstop in either Q1 2005

or Q1 2006 (i.e., routes where a carrier’s nonstop service may be seasonal). We can only identify

two such carrier-routes in our sample (United for San Antonio-San Francisco and Sun Country

(part of Other Low Cost) for Indianapolis-Kansas City), out of 8,065 carrier-routes.

Definition of players, nonstop and connecting service. We are focused on the decision of

carriers to provide nonstop service on a route. Before defining any players or outcomes, we drop

all passenger itineraries from DB1 that involve prices of less than $25 or more than $2000 dollars66,

open-jaw journeys or journeys involving more than one connection in either direction. Our next

step is to aggregate smaller players into composite “Other Legacy” and “Other LCC” carriers, in

addition to the “named” carriers (American, Continental, Delta, Northwest, Southwest, United

and US Airways) that we focus on. Our classification of carriers as low-cost follows Berry and

Jia (2010). Based on the number of passengers carried, the largest Other Legacy carrier is Alaska

Airlines, and the largest Other LCC carriers are JetBlue and AirTran.

We define the set of players on a given route as those ticketing carriers who achieve at least a 1%

share of total travelers (regardless of their originating endpoint) and, based on the assumption that

65The measure is calculated as

∑
m=1,..,M=12

(
100×Traffica,m

Traffica
−100

)2

1000
.

66These fare thresholds are halved for one-way trips.
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Figure A.1: Proportion of DB1 Passengers Traveling with Connections, Based on the Type of
Service
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(ii) Connecting Carriers

DB1 is a 10% sample, carry at least 200 return passengers per quarter, with a one-way passenger

counted as one-half of a return passenger. We define a carrier as providing nonstop service on a

route if it, or its regional affiliates, are recorded in the T100 data as having at least 64 nonstop

flights in each direction during the quarter and at least 50% of the DB1 passengers that it carries are

recorded as not making connections (some of these passengers may be traveling on flights that make

a stop but do not require a change of planes). Other players are defined as providing connecting

service.

There is some arbitrariness in these thresholds. However, the 64 flight and 50% nonstop

thresholds for nonstop service have little effect because almost all nonstop carriers far exceed these

thresholds. For example, Figure A.1 shows that the carriers we define as nonstop typically carry

only a small proportion of connecting passengers. For the same reason, we also model nonstop

carriers as only providing nonstop service even if some of their passengers fly connecting, although

we include the connecting passengers when calculating market shares.

On the other hand, our 1% share/200 passenger thresholds do affect the number of connecting

carriers. For example, if we instead require players to carry 300 return passengers and have a 2%

share, the average number of connecting carriers per route falls by almost one-third as marginal

connecting carriers are excluded.
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Market Size. Market size is used to define market shares and to calculate counterfactual quan-

tities and profits. Given the role of market size in the identification and estimation of demand and

entry-type models, the ideal definition should imply that variation in shares across routes, or across

directions, should reflect changes in prices, carrier characteristics and service types, and it should

be a good predictor of the number of nonstop firms.

A standard approach in the literature is to use the geometric average of the endpoint MSA

populations (e.g., Berry and Jia (2010), Ciliberto and Williams (2014)). However, this performs

poorly for airport-pair routes (MSA demand may be split between several airports, it cannot allow

for the possibility that demand is systematically different at the endpoints and it does not account

for the effects of distance on how much people want to travel.

We therefore consider an alternative definition based on the estimates of a generalized gravity

equation, used previously in Sweeting et al. (2020). The model specifies that the total number

of second quarter passengers on a route varies with a linear function of the log of the count of

originating and arriving passengers at each of the endpoint airports (measured for the second

quarter of the previous year), log route distance and interactions of these lagged passengers flow

and distance variables. The corresponding Poisson regression is estimated using data from 2005-

2011, including year, origin and destination fixed effects and interactions between a dummy for

long-distance routes, defined as those over 2,300 miles and origin and destination fixed effects.67

With the estimates in hand, we calculate the expected number of passengers for each directional

market for Q2 2006, based on lagged values of passenger flows in Q2 2005. Our market size measure

multiplies this prediction by 3.5.

Two comparisons suggest that our measure provides a superior measure of market size to esti-

mates based on average population. Given that prices and service in each direction on a route tend

to be similar we would expect the correlation in the combined market share of all of the carriers to

be quite high: using our measure the correlation is 0.86, whereas it is only 0.56 using the geometric

average population. Consistent with this difference, if one estimates our model using population-

based market size measures, there is much greater unobserved heterogeneity in demand than there

is in our estimates. CMT, who use a population-based measure, also estimate much more demand

heterogeneity than we do.

Table A.1 examines the ability of the different market size variables to predict the number of

67The individual coefficients are not especially informative because of the interactions, but combining them shows
reasonable patterns. For example, the expected number of passengers declines in route distance, increases with both
lagged originating traffic at the origin airport, and lagged arriving traffic at the destination.
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Table A.1: Market Size Measures and the Number of Nonstop Car-
riers

(1) (2) (3) (4) (5)
Our Market Size 3.230 11.05 11.04
(/10,000) (0.110) (0.440) (0.482)
Our Market Size2 -8.933 -8.780

(0.560) (0.587)
Our Market Size3 2.283 2.230

(0.190) (0.196)
Geom. Avg. Pop. 2.476 10.48 2.125
(/1 m.) (0.136) (0.823) (0.966)
Geom. Avg. Pop.2 -12.98 -4.835

(1.536) (1.757)
Geom. Avg. Pop.3 4.977 2.433

(0.773) (0.877)

Ordered Probit Cutoffs
Cutoff 1 0.730 1.596 0.725 1.801 1.813

(0.0369) (0.0604) (0.0460) (0.113) (0.126)
Cutoff 2 2.082 3.350 1.722 2.844 3.571

(0.0563) (0.0965) (0.0548) (0.120) (0.146)
Cutoff 3 3.915 4.995 2.761 3.890 5.217

(0.128) (0.132) (0.0789) (0.133) (0.171)
Cutoff 4 6.987 6.877 4.134 5.181 7.112

(0.431) (0.333) (0.232) (0.240) (0.351)

Observations 2,028 2,028 2,028 2,028 2,028
Pseudo-R2 0.262 0.368 0.0770 0.109 0.371

Notes: coefficients from an ordered probit regression where the dependent
variable is the number of nonstop carriers on the non-directional route.
“Our market size” measure is the average of our measure of market size
across directions. Standard errors in parentheses. Number of observations
is equal to the number of routes.

nonstop carriers on a route using an ordered probit model. Examination of the reported pseudo-

R2s shows that our gravity measure has much stronger predictive power, and that when we add

population-based variables to a specification with a flexible function of our measure (i.e., going from

column (2) to column (5)) the R2 increases by less than 1%. However, because we recognize that

our market size measure is still imperfect, we also allow for an additional route-level unobservable

that is common to the demand of all carriers, but is unobserved by the researcher.

Prices and Market Shares. As is well-known, airlines use revenue management strategies that

result in passengers on the same route paying quite different prices. Even if more detailed data

(e.g., on when tickets are purchased) was available, it would likely not be feasible to model these

type of strategies within the context of a combined service choice and pricing game. We therefore
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use the average price as our price measure, but allow for prices and market shares (defined as the

number of originating passengers carried divided by market size) to be different in each direction, so

that we can capture differences in passenger preferences (possibly reflecting frequent-flyer program

membership) across different airports.68

A.2 Network Variables.

The legacy carriers in our data operate hub-and-spoke networks. On many medium-sized routes

local demand could not generate sufficient variable profits to cover the fixed costs of nonstop service,

but nonstop service may be profitable once the value of passengers who will use a nonstop flight as

one segment on a longer journey is taken into account. While our structural model captures price

competition for passengers traveling only the route itself, we allow for three “network variables”

that capture the value of traffic to other destinations to offset the fixed cost of providing nonstop

service.

Two variables are indicators for the principal domestic and international hubs of the non-

composite carriers. We define domestic hubs as airports where more than 10,000 of the carrier’s

ticketed passengers made domestic connections in DB1 in Q2 2005 (i.e., one year before our esti-

mation sample). Note that some airports, such as New York’s JFK airport for Delta, that are

often classified as hubs, do not meet our definition because the number of passengers using them

for domestic connections is quite small, even though the carrier serves many destinations from the

airport. International hubs are airports that carriers use to serve a significant number of non-

Canadian/Mexican international destinations nonstop. Table A.2 shows the airports counted as

hubs for each named carrier.

An Ancillary Model of Connecting Traffic The third variable is a continuous measure of how

much connecting traffic a carrier is likely to carry if it serves a route to a domestic hub nonstop. We

use a reduced-form model of network flows that fits the data well69 and which gives us a prediction

of how much connecting traffic that a carrier can generate on a route where it does not currently

68Carriers may choose a similar set of ticket prices to use in each direction but revenue management techniques
mean that average prices can be significantly different. Fares on contracts that carriers negotiate with the federal
government and large employers may also play a role, but there is no data available on how many tickets are sold
under these contracts.

69This is true even though we do not make use of additional information on connecting times at different domestic
hubs which could potentially improve the within-sample fit of the model, as in Berry and Jia (2010). As well as
wanting to avoid excessive complexity, we would face the problem that we would not observe connection times for
routes that do not currently have nonstop service on each segment, but which could for alternative service choices
considered in our model.
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provide nonstop service, taking the service that it provides on other routes as given. We include

this prediction in our model of service choice as a variable that can reduce the effective fixed cost

of providing nonstop service on the route.70

Model. We build our prediction of nonstop traffic on a particular segment up from a multinomial

logit model of the share of the connecting passengers going from a particular origin to a particular

destination (e.g., Raleigh (RDU) to San Francisco (SFO)) who will use a particular carrier-hub

combination to make the connection. Specifically,

sc,i,od =
exp(Xc,i,odβ + ξc,i,od)

1 +
∑

l

∑
k exp(Xl,k,o,dβ + ξl,k,od)

(2)

where Xc,i,od is a vector of observed characteristics for the connection (c)-carrier (i)-origin (o)-

destination (d) combination and ξc,i,od is an unobserved characteristic. The Xs are functions of

variables that we are treating as exogenous such as airport presence, endpoint populations and

geography. The outside good is traveling using connecting service via an airport that is not one of

the domestic hubs that we identify.71 Assuming that we have enough connecting passengers that

the choice probabilities can be treated as equal to the observed market shares, we could potentially

estimate the parameters using the standard estimating equation for aggregate data (Berry 1994):

log(sc,j,od)− log(s0,od) = Xc,j,odβ + ξc,j,od. (3)

However, estimating (3) would ignore the selection problem that arises from the fact that some

connections may only be available because the carrier will attract a large share of connecting

traffic. We therefore introduce an additional probit model, as part of a Heckman selection model,

to describe the probability that carrier i does serve the full ocd route,

Pr(i serves route ocd) = Φ (Wc,j,odγ) . (4)

Sample, Included Variables and Exclusion Restrictions. We estimate our model using data

from Q2 2005 (one year prior to the data used to estimate our main model) for the top 100 US

airports. We use DB1 passengers who (i) travel from their origin to their destination making at

least one stop in at least one direction (or their only direction if they go one-way) and no more

70We also use the predicted value, not the actual value, on routes where we actually observe nonstop service.
71For example, the outside good for Raleigh to San Francisco could involve traveling via Nashville on any carrier

(because Nashville is not a domestic hub) or on Delta via Dallas Fort Worth because, during our data, Dallas is not
defined as a domestic hub for Delta even though it is for American.
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than one stop in either direction; and, (ii) have only one ticketing carrier for their entire trip. For

each direction of the trip, a passenger counts as one-half of a passenger on an origin-connecting-

destination pair route (so a passenger traveling RDU-ATL-SFO-CVG-RDU counts as 1
2 on RDU-

ATL-SFO and 1
2 on RDU-CVG-SFO). Having joined the passenger data to the set of carrier-

origin-destination-connecting airport combinations, we then exclude origin-destination routes with

less than 25 connecting passengers (adding up across all connecting routes) or any origin-connection

or connection-destination segment that is less than 100 miles long.72 We also drop carrier-origin-

destination-connecting airport observations where the carrier (or one of its regional affiliates) is not,

based on T100, providing nonstop service on the segments involved in the connection. This gives

us a sample of 5,765 origin-destination pairs and 142,506 carrier-origin-destination-hub connecting

airport combinations, of which 47,996 are considered to be served in the data.

In Xc,j,od (share equation), we include variables designed to measure the attractiveness of the

carrier j and the particular ocd connecting route. Specifically, the included variables are carrier j’s

presence at the origin and its square, its presence at the destination and its square, the interaction

between carrier j’s origin and destination presence, the distance involved in flying route ocd divided

by the nonstop distance between the origin and destination (we call this the ‘relative distance’ of

the connecting route), an indicator for whether route ocd is the shortest route involving a hub,

an indicator for whether ocd is the shortest route involving a hub for carrier j and the interaction

between these two indicator variables and the relative distance.

The logic of our model allows us to define some identifying exclusion restrictions in the form

of variables that appear in W but not in X. For example, the size of the populations in Raleigh,

Atlanta and San Francisco will affect whether Delta offers service between RDU and ATL and ATL

and SFO, but it should not be directly relevant for the choice of whether a traveler who is going from

RDU to SFO connects via Atlanta (or a smaller city such as Charlotte), so these population terms

can appear in the selection equation for whether nonstop service is offered but not the connecting

share equation. In Wc,j,od we include origin, destination and connecting airport presence for carrier

i; the interactions of origin and connecting airport presence and of destination and connecting

airport presence; origin, destination and connecting city populations; the interactions of origin

and connecting city populations and of destination and connecting city populations, a count of

72Note while we will only use routes of more than 350 miles in the estimation of our main model, we use a shorter
cut-off here because we do not want to lose too many passengers who travel more than 350 miles on one segment but
less than 350 miles on a second segment.
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the number of airports in the origin, destination and connecting cities73; indicators for whether

either of the origin or destination airports is an airport with limitations on how far planes can fly

(LaGuardia and Reagan National) and the interactions of these variables with the distance between

the origin or destination (as appropriate) and the connecting airport; indicators for whether the

origin or destination airport are slot-constrained. In both Xc,j,od and Wc,j,od we also include origin,

destination and carrier-connecting airport dummies.

Results. We estimate the equations using a one-step Maximum Likelihood procedure where

we allow for residuals in (3) and (4), which are assumed to be normally distributed, to be corre-

lated. However, our predictions are almost identical using a two-step procedure (the correlation

in predictions greater than 0.999). The coefficient estimates are in Table A.3, although the many

interactions mean that it is not straightforward to interpret the coefficients.

To generate a prediction of the connecting traffic that a carrier will serve if it operates nonstop

on particular segment, we proceed as follows. First, holding service on other routes and by other

carriers fixed, we use the estimates to calculate a predicted value for each carrier’s share of traffic

on a particular ocd route. Second, we multiply this share prediction by the number of connecting

travelers on the od route to get a predicted number of passengers. Third, we add up across all

oc and cd pairs involving a segment to get our prediction of the number of connecting passengers

served if nonstop service is provided. There will obviously be error in this prediction resulting

from our failure to account for how the total number of connecting passengers may be affected by

service changes and the fact that service decisions will really be made simultaneously across an

airline network.

However we find that the estimated model provides quite accurate predictions of how many

connecting travelers use different segments, which makes us believe that it should be useful when

thinking about the gain to adding some marginal nonstop routes to a network. For the named

legacy carriers in our primary model, there is a correlation of 0.96 between the predicted and

observed numbers of connecting passengers on segments that are served nonstop. The model also

captures some natural geographic variation. For example, for many destinations a connection via

Dallas is likely to be more attractive for a passenger originating in Raleigh-Durham (RDU) than

a passenger originating in Boston (BOS), while the opposite may hold for Chicago. Our model

predicts that American, with hubs in both Dallas (DFW) and Chicago (ORD), should serve 2,247

connecting DB1 passengers on RDU-DFW, 1,213 on RDU-ORD and 376 on RDU-STL (St Louis),

73For example, the number is 3 for the airports BWI, DCA and IAD in the Washington DC-Baltimore metro area.
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Table A.3: Estimation Coefficients for Ancillary Model of Connecting Traffic

Connecting Share Serve Route 1
2
log 1+ρ

1−ρ log(std. deviation)

Constant 4.200 -8.712 -0.109 0.308
(0.338) (0.823) (0.0860) (0.0150)

Presence at Origin Airport 4.135 6.052
(0.396) (1.136)

Presence at Connecting Airport 11.90
(0.721)

Presence at Destination Airport 2.587 6.094
(0.396) (1.126)

Origin Presence X Connecting Presence -5.536
(1.311)

Destin. Presence X Connecting Presence -5.771
(1.303)

Population of Connecting Airport -1.20e-07
(3.16e-08)

Origin Population X Origin Presence -5.09e-08
(2.23e-08)

Destin. Population X Destination Presence -4.46e-08
(2.35e-08)

Number of Airports Served from Origin 0.543
(0.101)

Number of Airports Served from Destination 0.529
(0.0984)

Origin is Restricted Perimeter Airport 0.0317
(0.321)

Destination is Restricted Perimeter Airport -0.0865
(0.305)

Origin is Slot Controlled Airport -1.098
(0.321)

Destination is Slot Controlled Airport -1.055
(0.331)

Distance: Origin to Connection -0.00146
(0.000128)

Distance: Connection to Destination -0.00143
(0.000125)

Origin Restricted X Distance Origin - Connection 0.000569
(0.000207)

Destin. Restricted X Distance Connection - Destin 0.000602
(0.000211)

Relative Distance -4.657
(0.441)

Most Convenient Own Hub -0.357
(0.192)

Most Convenient Hub of Any Carrier -0.574
(0.442)

Origin Presence2 -2.797
(0.429)

Destination Presence2 -1.862
(0.449)

Relative Distance2 0.745
(0.129)

Most Convenient Own Hub X Relative Distance2 0.479
(0.151)

Most Convenient Hub of Any Carrier X 0.590
Relative Distance (0.434)
Origin Presence X Destination Presence -5.278

(0.513)

Observations 142,506 - - -

Notes: robust standard errors in parentheses.
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which compares with observed numbers of 2,533, 1,197 and 376. On the other hand, from Boston

the model predicts that American will serve more connecting traffic via ORD (2,265, observed

2,765) than DFW (2,040, observed 2,364).

A.3 Nonstop Duopoly Routes Used in the Counterfactual Analysis.

Most of our counterfactual analysis will involve 24 routes where nonstop duopolists were involved

in four specific legacy carrier mergers. While a focus on routes with multiple nonstop carriers is

sensible given that these are the types of mergers that, with no service changes, are predicted to

have the largest price increases (see Table 7) and most passengers travel on routes with at least

two nonstop carriers (Table 2), one might wonder whether the 24 routes that we focus on are

representative of nonstop duopoly routes in general. Table A.4 provides a comparison between

three groups of markets.

The first group contains the 24 legacy nonstop duopoly routes that we use in our main coun-

terfactuals. The second group contains all remaining legacy nonstop duopoly routes (for example,

American and Northwest might be the nonstop duopolists). The third group are nonstop duopoly

routes where Southwest (the named non-legacy carrier in our analysis) is nonstop.

The most noticeable pattern when we compare the first two groups is that on the 24 routes

there are more connecting rivals and, together, they account for a larger market share. Therefore

one would expect that, holding everything else equal, mergers on our routes would tend to have less

anticompetitive effects and that, simply given the larger number of connecting passengers, there

might be a higher probability of repositioning. Nonstop prices are significantly lower on routes

where Southwest offers nonstop service, consistent with Southwest having lower costs. As noted

in Appendix A.4, we also observe different price changes on Southwest-Airtran nonstop duopoly

routes after the Southwest-Airtran merger, consistent with greater efficiencies. These differences

imply that we should not extrapolate from our results, which fit what happens after legacy mergers

well, to what would happen after mergers involving low-cost carriers.

A.4 An Analysis of Changes to Prices and Service After Airline Mergers Post-

2006.

We use our model to predict the effects of three legacy carrier mergers that took place after the

period of our data (Delta/Northwest merger (closed October 2008), United/Continental (October

2010) and American/US Airways (December 2013)). In this section we describe an analysis of what
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happened to the prices and quantities of the merging parties and the service decisions of rivals on

routes where the merging parties were nonstop duopolists. Holding service types fixed, one would

expect that the merger might create significant market power on these routes. We also consider

the Southwest/Airtran merger (May 2011) although we do not perform counterfactuals for that

merger as Airtran is part of our composite Other LCC carrier. To perform the analysis, we created

a panel dataset that runs from the first quarter of 2001 to the first quarter of 2017 using the same

definition of nonstop service, but without aggregating smaller carriers into composite Other Legacy

and Other LCC rivals.

A.4.1 Frequency of Rivals Launching Nonstop Service.

On routes where the merging firms are nonstop duopolists before the merger, the merged firm

always maintains nonstop service until the end of our data. We calculate the number of routes

where at least one rival carrier, including carriers that were not providing any service prior to the

merger, initiated nonstop service within two (or three) years of the merger closing. A two year

window is often considered when examining entry and repositioning in merger cases, and was the

window considered by the Department of Transportation when it reviewed airline mergers (Keyes

(1987)). We will use three years in our analysis of price and quantity changes below as an additional

year provides more precision to our estimates which are based on a small number of routes, with

only small effects on the point estimates.

We find that no rivals (no rivals) initiated nonstop service within two (three) years on five

routes where the merging parties were nonstop duopolists immediately before the closing of the

merger for Delta/Northwest. Rivals did initiate nonstop service on one (two) out of five routes

for United/Continental, three (four) out of six routes for American/US Airways and one (one) out

of seventeen nonstop duopoly routes for Southwest/Airtran. Therefore, the overall rate of rivals

initiating nonstop service was five (seven) out of thirty-three routes, or four (six) out of sixteen if

we only consider legacy mergers.74

One explanation for a low rate of repositioning is that rivals are ill-suited to provide nonstop

service on these routes, so that the merging carriers can exercise market power even if the merger

does not generate efficiency advantages (higher quality or lower marginal costs). This will be the

explanation that we focus on in our counterfactuals. However, an alternative explanation is that

it is efficiencies created through the merger that make it unattractive for rivals to offer nonstop

74There is no overlap in the routes across these mergers.
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service. An analysis of changes to price and market shares can give some insights into which of

these stores are correct.

A.4.2 Changes to the Merging Carriers’ Prices and Quantities.

We define a treatment group of routes where the merging carriers were nonstop duopolists prior to

the merger. We also define a control group of routes where one of the merging carriers is nonstop

and the other is either not on the route at all or is at most a quite marginal connecting carrier, with

a nondirectional share of traffic of less than 2%. However, we acknowledge that the literature has

defined control groups in a number of different ways, with different results (see the literature review

in the Introduction), and that to the extent that carriers offer networks, it is implausible that the

control routes would be completely unaffected by changes in the treatment routes. We also restrict

the control group to only include routes where no carriers initiated new nonstop service after the

merger. We define three year pre- and post-merger windows (this provides more power than two year

windows, although the pattern of the coefficients are similar using two or three year windows). For

Delta/Northwest the windows are Q3 2005-Q2 2008 and Q1 2009-Q4 2011. For United/Continental

the windows are Q3 2007-Q2 2010 and Q1 2011-Q4 2013. For American/US Airways the situation

is less straightforward as detailed negotiations between the parties, a bankruptcy judge and the

Department of Justice were known to be ongoing from at least August 2012. We therefore use

windows of Q3 2009-Q2 2012 and Q2 2014-Q1 2017.75 For Southwest/Airtran we use windows of

Q2 2007-Q1 2010 and Q3 2010-Q2 2013.

We use a regression specification

yimt = β0 + β1 ∗ Treatmentim ∗ Post-Mergerit +Ximtβ2 +Qtβ3 +Mimβ4 + εimt

where yimt is the outcome variable (the log of the weighted average price or the log of the combined

number of local passengers (i.e., passengers just flying the route itself and not making connections to

other destinations) on the merging carriers) for merging carrier i in directional airport-pair market

m in quarter t, Qt and Mim are quarter and carrier-market dummies and β1 is the coefficient

of interest.76 m is defined directionally, but we cluster standard errors on the non-directional

route. Ximt contains dummy controls for the number of competitors (including connecting carriers),

75We exclude two American/US Airways routes where rivals began service between the end of the pre-merger
window and the financial closing of the merger from the treatment group.

76To be clear, in the pre-merger period we combine the number of passengers on the merging carriers and use their
weighted average fare, so there is a single observation per market-quarter.
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distinguishing between legacy and LCC competitors, and one-quarter lagged fuel prices interacted

with route nonstop distance and its square. A route is defined to be in the treatment or the control

group based on the observed market structure in the last four quarters of the pre-merger window

(so to be in the treatment group, for example, both merging carriers must be nonstop in each of

these quarters). Note that this means that the treatment samples are different and smaller than

those considered for the repositioning analysis above, where we defined duopoly based on the one

quarter immediately before the financial closing of the merger. They can also differ from the routes

used in our counterfactuals where we will use the market structure from Q2 2006.

The results are presented in Table A.5. We report results for each merger and for the three

legacy mergers combined. The upper part of the table presents the results when we only include

treatment routes where no rivals launch nonstop service before or during the post-merger window.

In the lower panel we only use treatment routes where at least one rival initiated nonstop service

after the financial closure of the merger but before or during the post-period window, and, for

these routes, we only include post-merger window observations where this rival service was actually

provided.

The results are suggestive, despite the small number of treatment observations. For the legacy

mergers the pattern is that prices increase and the number of local passengers falls in the treatment

routes when no rivals initiate nonstop service, consistent with an increase in market power and

limited synergies from combining service on the treatment routes. The fall in the number of local

passengers is large, but this pattern appears to be robust: for example, if we also include a linear

time trend for the treatment group markets, to allow for the possibility that demand was falling in

the type of markets that are nonstop duopolies, the coefficient is -0.293 with a standard error of

0.092. This is almost identical to the coefficient of -0.295 reported in Table A.5, column (1). On

the other hand, on routes where rival nonstop service is initiated there is no clear pattern of price

increases. The number of passengers carried by the merging carriers declines in these markets,

presumably due to competition from the new nonstop carrier.

The pattern is different for Southwest/Airtran, although we note that we have fewer treatment

routes than the sixteen routes that were nonstop duopolies immediately before the merger because,

in a number of routes, a legacy carrier stopped its nonstop service during the pre-merger window

once both Southwest and Airtran were nonstop. There is no statistically significant price increase

on the nonstop duopoly routes when Southwest and Airtran merge and there is no statistically

significant decline in the number of passengers. This result suggests that this LCC merger may

have generated route-level synergies.
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B Estimation and Robustness Checks

This Appendix provides additional detail on how we solve the model, the performance of our

estimation algorithm and the robustness of our estimates. Section B.1 explains how we solve the

model. Section B.2 explains the choice of the importance densities used in estimation. Sections

B.3-B.6 analyze aspects of the performance of the estimation algorithm in more detail, including

the fit of the model and the robustness of the results to reducing the number of moments. Sections

B.7 presents estimation results using moment inequalities. The reader is referred to Li et al. (2018)

for details of a Monte Carlo procedure that illustrates the good performance of our estimation

procedures, under our baseline assumption and using inequalities.

B.1 Solving the Model.

Our baseline assumption is that service choices are made sequentially in a known order. For a given

set of service choices on a given route, we can solve for a unique Bertrand Nash pricing equilibrium

in each direction by solving the system of first-order conditions. One approach for solving the

service choice game would be to compute equilibrium variable profits for every possible service

choice combination and then apply backwards induction. However, we are able to speed up solving

the game, by 80% or more, by selectively growing the game tree forward.

To do so, we first calculate whether the first mover would earn positive profits as a nonstop

carrier if it were the only carrier in the market, given its fixed cost.77 If not, then we do not need

to consider any of the branches where it provides nonstop service, immediately eliminating half of

the game tree from consideration. If it is profitable, then we need to consider both branches. We

then turn to the second carrier, and ask the same question, for each of the first carrier branches

that remain under consideration, and we only keep the nonstop branch for the second carrier if

nonstop service yields it (i.e., the second carrier) positive profits. Once this has been done for all

carriers, we can solve backwards to find the unique subgame perfect equilibrium using the resulting

tree, which usually has many fewer branches than the full game tree.

B.2 Specification of g, Random Variable Supports and Preliminary Estimation.

Choice of g and W . The use of importance sampling assumes that the importance densities

g(θm|Xm) and the distributions assumed by the model f(θm|Xm,Γ) have the same supports which

do not depend on Γ, the parameters to be estimated. As discussed by Geweke (1989), consistency of

the importance sampling estimator also requires that g is sufficiently similar to f that the variance

of y(θms, Xm)f(θms|Xm,Γ)
g(θms|Xm) is finite. These considerations lead us to use a multi-round estimation

approach, as recommended by Ackerberg (2009), where we specify wide supports for the demand

and cost draws, including all values that we believe may be relevant.78

77To be clear, this is not the same as testing whether nonstop service is more profitable than connecting service.
78The one exception to the rule of using wide supports is that we restrict the nesting parameter to lie between

0.5 and 0.9. This range covers most estimates from the existing literature (for example, Berry and Jia (2010) and
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Table B.1: Description of g For the Final Round of Estimation

Market Draw Symbol Support g

Route Demand Effect vm [-2,2] N(0, 0.4112)
Market Nesting Parameter τm [0.5,0.9] N(0.634, 0.0282)
Market Demand Slope αm [-0.75,-0.15] N(Xα

mβα, 0.0222)
(price in $00s)

Carrier Draw

Carrier Connecting Quality βCON,A→Bim [-2,10] N(XCON
im βCON , 0.2192)

Carrier Incremental Nonstop Quality βNSim [0,5] N(XNS
im βNS , 0.2572)

Carrier Marginal Cost ($00s) cim [0,6] N(XMC
im βMC , 0.1732)

Carrier Fixed Cost ($m) Fim [0,5] N(XF
imβF , 0.2342)

Notes: where the covariates in the Xs are the same as those in the estimated model, and the val-
ues of the βs for the final (initial) round of draws are as follows: βα.constant= −0.668 (−0.700),
βα.bizindex=0.493 (0.600), βα.tourist= 0.097 (0.2), βCON .legacy= 0.432 (0.400), βCON .LCC= 0.296
(0.300), βCON .presence= 0.570 (0.560), βNS .constant= 0.374 (0.500), βMC .legacy= 1.802 (1.600),
βMC .LCC= 1.408 (1.400), βMC .nonstop distance= 0.533 (0.600), βMC .nonstop distance2 = −0.005
(-0.01), βMC .conn distance= 0.597 (0.700), βMC .conn distance2 = −0.007 (-0.020), the remaining
marginal cost interactions are set equal to zero, βF .constant= 0.902 (0.750), βF .dom hub= 0.169 (-
0.25), βF .conn traffic= −0.764 (-0.01), βF .intl hub= −0.297 (-0.55), βF .slot constr= 0.556 (0.700). In
the initial round the standard deviations of the draws were as follows: random effect 0.5, nesting pa-
rameter 0.1, slope parameter 0.1, connecting quality 0.2, nonstop quality premium 0.5, marginal cost
0.15, fixed cost 0.25.

In the first round we matched a subset of the price, share and service choice moments through

straightforward experimentation to provide us with the initial parameterization reported in the

notes to Table B.1, and we then ran two further rounds of estimation of the whole model, with the

resulting estimates providing the g(θm|Xm) densities (reported in the table) that we use in the final

round of estimation that produces the estimates reported in Section 5. The final round uses 2,000

importance draws for each route, with S = 1, 000 used in estimation and samples from the full pool

of 2,000 used when estimating standard errors using a bootstrap where routes are resampled.

The computational burden is reasonable for academic research: solving 2,000 games for 2,028

routes takes less than two days on a medium-sized cluster, and the parameters are estimated in

one day on a laptop without any parallelization.79

We form the weighting matrix by using the results from the penultimate round of estimation

(where we use an identity weighting matrix). As the number of moments (1,384) is large relative

to the number of observations (16,130 carrier-route-directions) estimates of the covariances of the

Ciliberto and Williams (2014)). We experimented using the full range of [0,1], but found that the objective function
often had local minima where the estimated nesting parameter was very close to 0 or very close to 1, but the fit of
the moments was poor.

79In Roberts and Sweeting (2013) we bootstrap the entire multi-round procedure to calculate standard errors. In
the current article, we only bootstrap the final stage, while acknowledging that the choice of g was informed by
our initial attempts at estimation. See Li et al. (2018) for Monte Carlo evidence on how varying the gs affects the
estimates.
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moments are likely to be inaccurate, so our final round uses a diagonal weighting matrix, with equal

total weight on the groups of moments associated with price, share and service choice outcomes

and, within each group, the weight on each moment is proportional to the reciprocal of the variance

of that moment from the penultimate round.

B.3 Performance of the Estimation Algorithm For the Baseline Estimates.

The use of importance sampling during estimation has two benefits: it greatly reduces the compu-

tational burden and it generates a smooth and continuous objective function.

Figure B.1 shows the shape of the objective function when we vary each parameter around

its estimated value, holding the other parameters fixed. While these pictures certainly should not

be interpreted as strong evidence that there is a global minimum in multiple dimensions, it is

comforting that the objective function is convex in almost all dimensions.

B.4 Variance of the Moments.

For an importance sample estimate of a moment to be consistent the variance of y(θms, Xm)f(θms|Xm,Γ)
g(θms|Xm)

must be finite (Geweke (1989)). One informal way to assess this property in an application (Koop-

man et al. (2009)) is to plot how an estimate of the sample variance changes with S, and, in

particular, to see how ‘jumpy’ the variance plot is as S increases. The intuition is that if the true

variance is infinite, the estimated sample variance is likely to continue to jump wildly as S rises.

Figure B.2 shows these estimates of the sample variance for the moments associated with three

market-level outcomes, namely the weighted nonstop fare, the weighted connecting fare and the

quantity-based sum of squared market shares for the carriers in the market, based on the esti-

mated parameters. The number of simulations is on the x-axis (log scale) and the variance of
1
M

∑
y(θms, Xm)f(θms|Xm,Γ)

g(θms)
across simulations s = 1, .., S is on the y-axis. Relative to examples in

Koopman et al. (2009), the jumps in the estimated sample variance are quite small for S > 500.

In our application we are using S = 1, 000.

B.5 Model Fit.

Section 5 of the text briefly discusses the performance of the model at matching service choices.

Table B.2 provides more detail of how well the model predicts service choices for carriers at some

of their major hubs. In general, the model matches the fact that hub carriers serve most routes

nonstop, although it does underpredict service at both Salt Lake City and Newark.

Table B.3 uses the same draws to show the fit of average prices and shares by type of service

and by terciles of the market size distribution. We match average differences in market shares

and prices across service types very accurately, although we overpredict the levels of prices and

market shares. This partly reflects our use of new draws to assess fit rather than the draws used

in estimation, as the estimation draws provide a closer fit to levels as well.
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Figure B.1: Shape of the Objective Function Around the Estimated Parameters For the Parameter
Estimates in Column (1) of Tables 4 and 5 (black dot marks the estimated coefficient value)
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Figure B.2: Sample Variance of Three Moments as the Number of Simulation Draws is Increased
(logarithm of the number of draws on the x-axis)

100 102 104
0

200

400

600

800

(a) Weighted
Nonstop Fare

100 102 104
0

500

1000

1500

2000

2500

3000

(b) Weighted
Connecting Fare

100 102 104
0

0.2

0.4

0.6

0.8

(c) Sum of
Squared Market Shares

Table B.2: Model Fit: Prediction of Service Choices by Carriers at a Selection of
Domestic Hubs

Number of % Nonstop
Airport Carrier Routes Data Simulation

Atlanta Delta 57 96.5% 92.5% (2.3%)
Salt Lake City Delta 65 73.8% 52.9% (4.3%)
Chicago O’Hare American 53 96.2% 90.2% (2.7%)
Chicago O’Hare United 57 94.7% 92.4% (2.7%)
Charlotte US Airways 46 84.7% 77.9% (2.7%)
Denver United 58 72.4% 73.4% (4.2%)
Newark Continental 43 86.0% 61.6% (5.0%)
Houston Intercontinental Continental 55 90.9% 85.4% (4.3%)
Minneapolis Northwest 62 85.4% 77.7% (6.3%)
Chicago Midway Southwest 44 72.7% 64.5% (6.0%)

Notes: predictions based on the average of 20 simulated draws for each route using the es-
timated parameters in column (1) of Tables 4 and 5. Standard errors based on additional
sets of 20 draws for each of the bootstrap estimates used to calculate standard errors in
the same tables.
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Table B.3: Model Fit: Average Market Shares and Prices (bootstrapped stan-
dard errors in parentheses)

Data Model Prediction

Average All Markets Any Service $436 $455 (5)

Prices Nonstop $415 $436 (8)
(directions weighted Connecting $440 $458 (5)
by market shares)

Market Size Groups

1st Tercile Any Service $460 $465 (5)
2nd Tercile Any Service $442 $460 (5)
3rd Tercile Any Service $412 $441 (5)

Average All Markets Any Service 7.1% 8.4% (0.3%)

Carrier Market Nonstop 17.9% 20.5% (0.9%)
Shares Connecting 4.9% 5.8% (0.3%)

Market Size Groups

1st Tercile Nonstop 25.6% 29.8% (2.4%)
Connecting 8.6% 8.0% (0.4%)

2nd Tercile Nonstop 23.1% 26.6% (1.5%)
Connecting 4.3% 5.5% (0.3%)

3rd Tercile Nonstop 15.9% 18.7% (0.8%)
Connecting 1.8% 3.4% (0.3%)

Notes: see the notes to Table B.2.
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B.6 Robustness of the Results to Reducing the Number of Moments.

As mentioned in the text, we have repeated our estimation using only the 740 moments that are

based on carrier-specific outcomes.

Estimates. Table B.4 shows our estimates from the main text and the estimates when we use the

reduced number of moments. Most of the coefficients are very similar, and even where individual

coefficients are different they have similar implications. For example, even though the individual

coefficients measuring the incremental value of nonstop service change significantly, the implied

mean value of the increment falls only from 0.299 to 0.268.

Fit. Table B.5 compares model fit for prices and market shares for the two sets of estimates. The

predictions are very similar to each other.

Counterfactuals. Finally, we consider predicted price effects and service changes after a merger

between United and US Airways. We compute predictions using the four routes where the United

and US Airways were nonstop duopolists and American provided connecting service and the ten

routes where United and US Airways were nonstop and there was another nonstop rival. We

consider the case where we account for selection by forming conditional distributions, under our

baseline merger assumption that the lower presence carrier is removed, so that our results corre-

spond to row 2 of Table 8 and the third row of Table 11. The results from the text and the estimates

using the smaller number of moments are almost identical.
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Table B.4: Estimates Based on Different Sets of Moments (bootstrapped standard errors in paren-
theses)

(1) (2)
Text Estimates from Carrier-Specific
(from Table 4 and 5) Moments Only

Demand: Route-Level Parameters
Demand RE Std. D. σRE Constant 0.311 (0.138) 0.377 (0.142)
Nesting Parameter Mean βτ Constant 0.645 (0.012) 0.641 (0.013)

Std. D. στ Constant 0.042 (0.010) 0.029 (0.008)
Demand Slope Mean βα Constant -0.567 (0.040) -0.591 (0.036)
(price in $100 units) Business Index 0.349 (0.110) 0.400 (0.101)

Std. D. σα Constant 0.015 (0.010) 0.013 (0.008)

Demand: Carrier Qualities

Carrier Quality for Mean βCON Legacy Constant 0.376 (0.054) 0.332 (0.049)
Connecting Service LCC Constant 0.237 (0.094) 0.187 (0.094)

Presence 0.845 (0.130) 0.910 (0.154)
Std. D. σCON Constant 0.195 (0.025) 0.199 (0.030)

Incremental Quality Mean βNS Constant 0.258 (0.235) 0.000 (0.210)
of Nonstop Service Distance -0.025 (0.034) -0.001 (0.039)

Business Index 0.247 (0.494) 0.653 (0.483)
Std. D. σNS Constant 0.278 (0.038) 0.334 (0.051)

Costs
Carrier Marginal Cost Mean βMC Legacy Constant 1.802 (0.168) 1.713 (0.137)
(units are $100) LCC Constant 1.383 (0.194) 1.210 (0.135)

Conn. X Legacy 0.100 (0.229) 0.107 (0.230)
Conn. X LCC -0.165 (0.291) -0.150 (0.264)

Conn. X Other Leg. -0.270 (0.680) -0.226 (0.147)
Conn. X Other LCC 0.124 (0.156) 0.217 (0.151)

Nonstop Dist. 0.579 (0.117) 0.654 (0.096)
Nonstop Dist.2 -0.010 (0.018) -0.024 (0.016)
Conn. Distance 0.681 (0.083) 0.732 (0.099)
Conn. Distance2 -0.028 (0.012) -0.034 (0.012)

Std. D. σMC Constant 0.164 (0.021) 0.153 (0.015)

Carrier Fixed Cost Mean βF Legacy Constant 0.887 (0.061) 0.878 (0.062)
(units are $1 million) LCC Constant 0.957 (0.109) 0.923 (0.113)

Slot Const. Airport 0.568 (0.094) 0.530 (0.095)
Std. Dev. σF Constant 0.215 (0.035) 0.223 (0.036)

Carrier Network Dom. Hub Dummy -0.058 (0.127) 0.000 (0.207)

Variables (offset ̂Connecting Traffic -0.871 (0.227) -0.761 (0.281)

fixed costs) Intl. Hub -0.118 (0.120) -0.355 (0.142)

Note: standard errors in parentheses based on a bootstrap where routes are re-sampled and simulations are
drawn from a pool of 2,000 draws for each selected route.
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Table B.5: Model Fit: Average Market Shares and Prices Based on Different Sets of Moments

Model Predictions
Text Estimates Carrier

Data (taken from Table B.3) Moments

Average All Markets Any Service $436 $455 $455

Prices Nonstop $415 $436 $442
(directions weighted Connecting $440 $458 $459
by market shares)

Market Size Groups

1st Tercile Any Service $460 $465 $466
2nd Tercile Any Service $442 $460 $461
3rd Tercile Any Service $412 $441 $442

Average All Markets Any Service 7.1% 8.4% 8.5%

Carrier Market Nonstop 17.9% 20.5% 21.5%
Shares Connecting 4.9% 5.8% 5.5%

Market Size Groups

1st Tercile Nonstop 25.6% 29.8% 30.4%
Connecting 8.6% 8.0% 7.9%

2nd Tercile Nonstop 23.1% 26.6% 26.4%
Connecting 4.3% 5.5% 5.2%

3rd Tercile Nonstop 15.9% 18.7% 18.7%
Connecting 1.8% 3.4% 3.1%

Notes: Predictions from the model calculated based on twenty simulation draws from each route from the
relevant estimated distributions.

Table B.6: Predicted Effects of a United/US Airways Merger, under the Baseline Merger Assump-
tion, in Four Nonstop Duopoly Markets Based on Different Sets of Moments and the Conditional
Distributions

United/US Airways United/ US Airways

Nonstop Duopoly Routes Nonstop with Nonstop Rivals
Text Estimates Carrier Text Estimates Carrier
(from Table 8) Moments (from Table 11) Moments

Mean Pre-Merger United/ $531.97 $531.97 $350.02 $350.02
US Airways Price

Predicted Change in +0.10 +0.08 +0.05 +0.03
Nonstop Rivals Post-Merger

Mean Predicted Post-Merger $573.37 $574.29 $377.24 $377.55
Newco Price
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B.7 Estimation Using Moment Inequalities.

Our baseline estimates assume that carriers make service choices in a known sequential order, so

that there is a unique equilibrium. An alternative approach is to allow for simultaneous choices, or

an unknown order of moves, and estimate parameters based on moment inequalities. We present

results based on this approach here.

The form of the inequalities is

h(y,X,Z,Γ) = E


ydatam − ̂E(ym(X,Γ))

̂E(ym(X,Γ))− ydatam

⊗ Zm

 ≥ 0

where ydatam are observed outcomes in the data and Zm are non-negative instruments. ̂E(ym(X,Γ))

and ̂E(ym(X,Γ)) are minimum and maximum expected values for ym given a set of parameters Γ.

The minimum and maximum are formed by using the minimum and maximum values of the outcome

across different equilibria or across orders for each simulated draw from the importance density.

For example, if the outcome is whether firm A is nonstop, the lower bound (minimum) would be

formed by assuming that whenever there are equilibrium outcomes where A is not nonstop, one

of them will be realized, whereas the upper bound (maximum) would be formed by assuming that

whenever there are equilibrium outcomes where A is nonstop, one of them is realized. We can also

do the same type of calculation of minima and maxima for prices and market shares. If there is a

unique outcome the minimum and maximum will be the same. The expected values of the minimum

and maximum are calculated by re-weighting the different simulations in the same way that we do

when assuming a known sequential order, and we form moments using the same outcomes and

interactions that we use for our primary estimates. We note that our use of moment inequalities

differs from how it has been used in some entry-type games, such as Eizenberg (2014) and Wollmann

(2018), where selection on demand and marginal cost shocks is ruled out by assumption and the

moments are based on an equation for fixed costs with an additive structural error.

The objective function that is minimized is

Q(Γ) = min
t≥0

[ ̂h(y,X,Z,Γ)− t]W [ ̂h(y,X,Z,Γ)− t]

where t is a vector equal in length to the vector of moments, which sets equal to zeros the inequalities

that are satisfied. W is a weighting matrix, and, as for the baseline estimates, we use a diagonal

weighting matrix, dividing the moments into three groups (service choices, shares and prices). The

sum of the diagonal components for each group equals one, with each element scaled so that it is

proportional to the inverse of the variance of the moment evaluated at an initial set of estimates,

which were calculated using the identity matrix.
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Estimates. The ideal procedure for presenting the results of an estimation based on inequalities

is to present confidence sets for coefficients because the coefficients may not be point identified. The

construction of confidence sets is very difficult with large numbers of parameters and moments, and,

as we have emphasized in the text, certain features of the data mean that we expect the parameters

to be point identified even when we use inequalities in our setting.80 Therefore in the right-hand

column of Table B.7 we simply present the point estimates that we find minimize the objective

function. These estimates are very close to the estimates from the text that are also reported in

the table, which we view as confirming the result that we would expect given the nature of the

game that we are looking at and the data at hand.

80Outcomes where no carrier provides nonstop service (the most common outcome in our data) will always be
unique, and a necessary condition for there to be multiple equilibria is that at least two carriers do not have a
dominant service strategy. In our setting, in the vast majority of routes there is no more than one carrier with
intermediate probabilities of nonstop service based on a simple set of observables, which strongly suggests that
multiplicity should be rare. See Appendix C.
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Table B.7: Coefficient Estimates Based on Inequalities

(1) (2)
Parameters

Minimizing the
Baseline Moment Ineq.

Assumed Seq. Choice Obj. Fun.
Demand: Route-Level Parameters
Demand RE Std. Dev. σRE Constant 0.311 (0.138) 0.350
Nesting Parameter Mean βτ Constant 0.645 (0.012) 0.647

Std. Dev. στ Constant 0.042 (0.010) 0.040
Demand Slope Mean βα Constant -0.567 (0.040) -0.568
(price in $100 units) Business Index 0.349 (0.110) 0.345

Std. Dev. σα Constant 0.015 (0.010) 0.017

Demand: Carrier Qualities

Carrier Quality for Mean βCON Legacy Constant 0.376 (0.054) 0.368
Connecting Service LCC Constant 0.237 (0.094) 0.250

Presence 0.845 (0.130) 0.824
Std. Dev. σCON Constant 0.195 (0.025) 0.193

Incremental Quality Mean βNS Constant 0.258 (0.235) 0.366
of Nonstop Service Distance -0.025 (0.034) -0.041

Business Index 0.247 (0.494) 0.227
Std. Dev. σNS Constant 0.278 (0.038) 0.261

Costs
Carrier Marginal Cost Mean βMC Legacy Constant 1.802 (0.168) 1.792
(units are $100) LCC Constant 1.383 (0.194) 1.331

Conn. X Legacy 0.100 (0.229) 0.134
Conn. X LCC -0.165 (0.291) -0.077

Conn. X Other Leg. -0.270 (0.680) 0.197
Conn. X Other LCC 0.124 (0.156) 0.164

Nonstop Distance 0.579 (0.117) 0.589
Nonstop Distance2 -0.010 (0.018) -0.012

Connecting Distance 0.681 (0.083) 0.654
Connecting Distance2 -0.028 (0.012) -0.024

Std. Dev. σMC Constant 0.164 (0.021) 0.159

Carrier Fixed Cost Mean βF Legacy Constant 0.887 (0.061) 0.913
(units are $1 million) LCC Constant 0.957 (0.109) 1.015

Slot Const. Airport 0.568 (0.094) 0.602
Std. Dev. σF Constant 0.215 (0.035) 0.198

Carrier Network Dom. Hub Dummy -0.058 (0.127) -0.140

Variables (offset ̂Log(Connecting Traffic) -0.871 (0.227) -0.713

fixed costs) International Hub -0.118 (0.120) -0.168

Notes: standard errors for the baseline, in parentheses, are based on 100 bootstrap replications where 2,028 routes
are sampled with replacement, and we draw a new set of 1,000 simulation draws (taken from a pool of 2,000 draws)
for each selected route. The Log(Predicted Connecting Traffic) variable is re-scaled so that for routes out of do-
mestic hubs its mean is 0.52 and its standard deviation is 0.34. Its value is zero for non-hub routes. Distance is
measured in thousands of miles.
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C Multiple Equilibria, Identification and the Explanatory Power
of Observed Variables for Service and Entry Choices

One of our striking results is that, at the estimated parameters, less than 2% of simulations from

our model could support a different equilibrium outcome (i.e., different service choices) if we allowed

for simultaneous moves or any alternative sequential order. As a result, it is not surprising that our

coefficient estimates are very similar when we allow for these alternative possibilities (Appendix

B.7). Several scholars have commented to us that they find this result surprising given earlier

work examining airline entry decisions, notably Berry (1992) and Ciliberto and Tamer (2009), that

has found that assumptions about the timing of decisions can affect estimates quite dramatically

and that it is common for a simultaneous move game to support multiple different outcomes as

equilibria (for example, Ciliberto and Tamer find this is true for 95% of their simulations). In this

Appendix, we explain why models estimated using service choices and entry decisions, as defined

in the existing literature, can differ so much on this dimension.

We define a carrier to be nonstop based on the number of nonstop flights that a carrier has per

quarter (at least 64 in each direction to be defined as nonstop) and the proportion of passengers

carried that travel direct (at least 50% without a change of planes). Other carriers are connecting.

Carriers that provide nonstop service serve many more passengers than connecting carriers: the

median nonstop (named) carrier serves over 1,000 round-trip passengers in DB1 (which is a 10%

sample), whereas the median connecting carrier serves only 38 round-trip passengers, and, as noted

in Appendix A, there are few carriers close to the 64 or 50% thresholds.81 Our counterfactuals focus

on mergers of nonstop carriers, as an analysis with fixed products indicates that these mergers tend

to lead to the largest price increases unless rivals reposition.

In contrast, in Berry (1992) and Ciliberto and Tamer (2009), a carrier is defined as an entrant if

it carries, by any type of service, a relatively small number of passengers in a quarter (for example,

20 DB1 passengers in Ciliberto and Tamer (2009)). In the data, there are many carriers with

passenger counts that are right around these thresholds: the 25th percentile number of connecting

passengers is 14 and the median is 38. Given this pattern and the sampling error in the DB1 sample,

it is naturally quite difficult to predict which connecting carriers will be counted as entrants on a

particular route.

We illustrate how well our data explains service choices and entry by estimating several probit

specifications where the dependent variable are indicators for nonstop service or entry and the

explanatory variables are the observed characteristics of the carrier and market/route characteristics

(such as the average directional market size). The results are reported in Table C.1.

In the first five columns, the dependent variable is equal to one if the carrier is nonstop, and we

use the 8,065 carrier-route observations in our data. The regressors in column (1) are the average of

our market size measure across directions and the observable carrier and carrier-network variables

81The statistics discussed in this paragraph are for the named carriers we use, and not the composite Other Legacy
and Other LCC carriers.
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that we include in our specification of fixed costs. Despite the simplicity of the specification the

pseudo-R2 is 0.52. Column (2) adds the business index measure which we allow to shift the price

coefficient and the preference for nonstop service. It is statistically significant but barely improves

the fit. Column (3) replaces our market size measure with the geometric average population measure

that is most commonly used in the literature: the pseudo-R2 decreases to 0.45, indicating that this is

a poor alternative to our market size measure (a result which is consistent with the results presented

in Appendix Table A.1). Column (4) adds measures of the carrier’s presence at each endpoint, which

we allow to affect demand, to the second specification, and the pseudo-R2 increases to 0.65. In

column (5) we include interactions between a number of the variables in the specification (as noted

beneath the table) as well as measures of the number of rival carriers, and we find the pseudo-R2

increases to 0.73.

In column (6) we consider instead the decision to enter a route (i.e., to provide either type

of service) among the carriers that provide service (to any destination) at both airport endpoints

and use a specification similar to column (4). This is the type of binary outcome modeled in in

Berry (1992), Ciliberto and Tamer (2009) and Ciliberto et al. (2020). The pseudo-R2 is much lower

(0.134).

What is the implication of these results for whether our model should be expected to support

multiple equilibrium outcomes? A game with binary discrete choices can only support multiple

outcomes if the more profitable option depends on what other players do for at least two of the

players (i.e., at least two players do not have a dominant strategy). Intuitively, players are much

less likely to be on the margin between different options when observed variables (that do not reflect

what their rivals choose) strongly predict what their service choices will be. The service choice and

entry models are clearly very different in this regard.

To illustrate, Figure C.1(a), shows the distribution of predicted probabilities for a carrier provid-

ing nonstop service using 40 bins based on column (4). We observe that the predicted probabilities

are concentrated either very close to zero or very close to one. Defining intermediate as predicted

probabilities between 0.05 and 0.95 based on the column (4) estimates, there are 482 routes (less

than 24% of the total) where two or more carriers have intermediate nonstop service probabilities

(using thresholds of 0.1 and 0.9, 302 routes would have at least two carriers with intermediate

probabilities). In contrast, the predicted probabilities for entry choices, shown in Figure C.1(b)

(based on column (6)), lie mainly in the range from 0.2 to 0.8, and 96% of routes have two or

more carriers with intermediate entry probabilities. When we perform the exercise of counting how

many different outcomes our parameter estimates can support under different timing assumptions,

discussed in Section 5, we can see the connection between the predicted probabilities of nonstop

service in these simple regressions and the multiplicity of equilibrium outcomes: the probability of

a simulation draw for one of the 482 intermediate probability routes supporting multiple outcomes

is two-and-half times higher than for the remaining routes.

The service choice probit results also have implications for the identification of the model. As
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Table C.1: Probit Models of Carrier Service Choice and Entry Decisions

(1) (2) (3) (4) (5) (6)
Dep. Var. Nonstop Nonstop Nonstop Nonstop Nonstop Enter

Low Cost Carrier 0.808 0.808 0.782 0.537 1.681 0.514
(0.051) (0.0516) (0.0476) (0.0685) (0.395) (0.0376)

Slot Constr. Airport 0.559 0.587 0.724 0.541 0.232 -0.207
(0.095) (0.0961) (0.0927) (0.112) (0.132) (0.0650)

Carrier Intl. Hub 0.940 0.946 0.836 0.0385 -0.165 0.158
(0.074) (0.0748) (0.0738) (0.0894) (0.113) (0.0801)

Carrier Dom. Hub -6.090 -6.161 -6.942 -6.578 -34.24 -3.740
(0.645) (0.647) (0.623) (0.648) (47.37) (0.627)

Carrier Pred. Connecting 1.341 1.355 1.464 1.160 5.701 0.611
Traffic Measure (0.107) (0.107) (0.104) (0.108) (7.932) (0.106)

Route Business Index -0.663 -1.364 0.198 0.670 -0.126
(0.293) (0.268) (0.348) (0.387) (0.142)

Our Market Size 1.614 1.595 2.019 -0.176 -0.0552
/10,000 (0.064) (0.0649) (0.0828) (0.671) (0.0405)

Geom. Avg. Pop. 0.0122
/10,000 (0.00112)

Carrier Max. 3.543 4.334 1.622
Endpoint Presence (0.144) (0.626) (0.109)

Carrier Min. 1.916 6.814 4.424
Endpoint Presence (0.276) (2.510) (0.266)

Number Rival -0.167
Carriers in Market (0.0237)

Number Rival Low Cost 0.167
Carriers in Market (0.0663)

Constant -2.335 -2.065 -1.581 -3.930 -4.131 -0.312
(0.044) (0.127) (0.115) (0.177) (0.387) (0.0662)

Variable interactions N N N N Y N

Observations 8,065 8,065 8,065 8,065 8,065 12,550
Pseudo-R2 0.521 0.522 0.450 0.653 0.726 0.134

Notes: standard errors in parentheses. Observations in columns (1)-(5) are the carrier-route
observations that are included in our estimation dataset. Our Market Size is the average of
our market size estimate across directions. Geom. Avg. Pop. is the geometric average of the
MSA endpoint populations, a popular alternative measure of market size. We measure carrier
presence (the number of routes served nonstop by the carrier out of the total number of routes
served nonstop by any carrier) at the carrier-airport level and include the higher and lower val-
ues separately in the regressions. Observations in column (6) include the observations in our
estimation dataset plus observations for carrier-routes where the carrier provides some service at
both endpoints but does not meet our criteria for being a competitor on the route in question.
The interactions that are included in column (6) are between LCC, domestic hub, the predicted
connecting traffic, market size and the two presence measures.
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Figure C.1: Predicted Probabilities of Carrier Service Choices (based on Table C.1, column (4))
and Entry Decisions (based on Table C.1, column (6))
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(b) Predicted Probability of Entry

discussed in Section 4, one argument for why the demand and marginal cost parameters are point

identified is that there are a large number of routes and carriers for which observed covariates

essentially determine their service choices so that there should be (almost) no selection on unob-

servable demand or marginal cost shocks when they make these choices. Based on the column (4)

estimates, 58% of route-carriers predicted nonstop service probabilities are less than 0.01 or more

than 0.99, meaning that we have a large number of observations where selection based on demand

and marginal cost unobservables is likely to be minimal, and conventional identification arguments

should apply.
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