

1 HOW CHAPTER 11 CHANGES THE GAME: INVESTMENT AND BANKRUPTCY 2 IN THE U.S. AIRLINE INDUSTRY

JOE MAZUR

Department of Economics, Purdue University

Although economists agree that insolvency policy influences capital investment, few models consider its impact on competitive strategy. Those that do tend to equate bankruptcy with liquidation, ignoring the restructuring and reemergence that commonly characterize Chapter 11 cases. Moreover, because the U.S. Bankruptcy Code permits abrogation of long-term contracts (e.g. for labor or capital) under Chapter 11, it provides otherwise constrained firms an opportunity to right-size, generating a non-financial link between investment and bankruptcy. To investigate this link and its implications for competitive strategy, I estimate a dynamic oligopoly game of investment and reorganization using data on the U.S. airline industry. Counterfactual simulations imposing a liquidation-only insolvency policy suggest that the option to reorganize under Chapter 11 increases capacity by up to 20%. I also find evidence that the last major reform of the U.S. Bankruptcy Code, in 2005, likely contributed to the “capacity discipline” widely observed in the industry thereafter.

KEYWORDS: bankruptcy, airlines, capacity, investment, oligopoly.

27 Joe Mazur: mazur3@purdue.edu

I owe special thanks to Andrew Sweeting, Jimmy Roberts, Peter Arcidiacono, Tracy Lewis, and Daniel Xu for their invaluable suggestions, guidance, and encouragement. I also wish to thank the Duke Economics Department and Andrew Sweeting for data acquisition, and Allan Collard-Wexler, Steve Puller, Ariel Pakes, seminar participants at Purdue, Duke, Rochester, Indiana University, Northwestern, University of Iowa, Louisville, Williams College, and University of Kentucky, and my kind officemates for their helpful comments. Johanna Tejada provided excellent research assistance. All errors are my own.

1	1. INTRODUCTION	1
2	"If you want to take the island, burn the boats." - Julius Caesar	2
3		3
4	Commitments are only as good as their credibility, as military leaders have known for	4
5	millennia. Economists formalized the notion decades ago, ¹ dubbing the maximally credi-	5
6	ble commitment "irreversibility." But what happens when the irreversible can be reversed?	6
7	In the case of long-run contracts, this is precisely what Chapter 11 of the U.S. Bankruptcy	7
8	Code provides. Long-run contractual commitments (e.g. collective bargaining agreements,	8
9	pension benefit arrangements, capital leases, etc.) are common in industry, and in many	9
10	cases they effectively create a cost to downsize. In so doing, they produce a strongly credi-	10
11	ble commitment with obvious strategic implications. Yet in Chapter 11 reorganization,	11
12	bankruptcy judges have the power to modify or rescind those contracts, leading one to ask	12
13	how the reorganization option influences the strategic interaction of firms.	13
14	Capital investment - and especially investment in capacity - seems the most salient exam-	14
15	ple of commitment in the industrial organization (I.O.) literature, as well as the most con-	15
16	sequential for industry dynamics, growth, and welfare. Yet studies of capital investment in	16
17	I.O. typically ignore bankruptcy entirely. ² Those models that do allow for bankruptcy tend	17
18	to equate it with exit, and while liquidation under Chapter 7 of the Bankruptcy Code can	18
19	be likened to exit, ³ the vast majority of large corporate bankruptcy cases in the U.S. <i>re-</i>	19
20	<i>organizations</i> - filed under Chapter 11. ⁴ Unlike liquidation proceedings, Chapter 11 cases	20
21	are brought forth - usually voluntarily - with the goal of exiting from bankruptcy court pro-	21
22	tection, not exiting from the market, and more than two thirds of large public firms filing	22
23	under Chapter 11 do eventually emerge from bankruptcy. ⁵ To the extent that irreversibility	23
24		24
25	¹ See, for example, the seminal books by Schelling (1960) and Porter (1980).	25
26	² A partial reading list might include such papers as Arrow (1968), Bertola and Caballero (1994), Ericson and	26
27	Pakes (1995), Abel and Eberly (1996), Besanko and Doraszelski (2004), Bloom et al. (2007), and Besanko et al.	27
28	(2010).	28
29	³ See, for example, seminal works such as Brander and Lewis (1988) and Cooley and Quadrini (2001).	29
30	⁴ Author's calculations based on LoPucki (2017). Among publicly traded U.S. firms that filed under Chapter 11	30
31	between 1980 and 2017 and had at least \$100 million in assets (in 1980 dollars), 97.8% filed under Chapter 11.	31
32	⁵ Author's calculations based on LoPucki (2017). Among publicly traded U.S. firms that filed under Chapter 11	32
	between 1980 and 2017 and had at least \$100 million in assets (in 1980 dollars), 67.5% emerged from bankruptcy.	

1 is achieved through long-run contracts, then, Chapter 11 must affect the equilibrium behav- 1
2 ior of forward-looking firms, yet the literature has heretofore overlooked this question. 2

3 Given the potential impact bankruptcy law may have on competitive strategy, capital 3
4 investment, and industry dynamics, one might expect scholars in law and economics or 4
5 corporate finance to have studied its implications - and they have - yet both fields typically 5
6 ignore competitive strategy. For example, while investment and bankruptcy are recognized 6
7 as endogenous decisions in the corporate finance literature, models of capital investment 7
8 and capital structure focus primarily on single-firm settings. The same is true of the law and 8
9 economics literature, where the intricacies of insolvency policy have clear bearing upon an 9
10 individual firm's investment and bankruptcy decisions, but without regard for the impact of 10
11 those decisions on equilibrium inter-firm behavior. Moreover, while both literatures clearly 11
12 link bankruptcy law to *ex ante* investment, the mechanism of action is almost always finan- 12
13 cial. Yet successful emergence from Chapter 11 reorganization is not typically effected by 13
14 changes in financial structure alone, but by thorough reevaluation and careful pruning of 14
15 the company's operations - pruning which might otherwise be prevented by long-run con- 15
16 tracts. Given this non-financial link between bankruptcy and investment, it seems natural to 16
17 ask whether endogenizing both choices in the familiar I.O. context of strategic interaction 17
18 generates any new insights, and indeed it does. 18

19 As this paper demonstrates, the handling of contracts under the U.S. Bankruptcy Code 19
20 can have a direct impact - and one distinct from any financing considerations - on the 20
21 *ex ante* investment behavior of imperfectly competitive firms. I examine the intuitive 21
22 yet overlooked relationship between capital investment and Chapter 11 reorganization 22
23 in three parts. First, I exploit an increase in the expected cost of reorganization due 23
24 to the Bankruptcy Abuse Prevention and Consumer Protection Act (BAPCPA) of 2005, 24
25 which made significant changes to Chapter 11. Legal scholars and practitioners agree 25
26 that the 2005 reform restricted debtor protection overall and reduced the likelihood of 26
27 successful reorganization, particularly for the largest and most complex corporations.⁶ I 27

28
29 I should note, however, that prior to 2019, outcomes were considerably more grim for small business bankruptcies, 29
30 a fact addressed by the passage of the Small Business Reorganization Act. 30

31 ⁶See, for example, [Iverson \(2018\)](#); [Coelho \(2010\)](#); [Gilson \(2010\)](#); [Ayotte and Morrison \(2009\)](#); [Gottlieb et al. \(2009\)](#); [Selbst \(2008\)](#); [Herman \(2007\)](#); [Altman and Hotchkiss \(2010\)](#); and [Sprayregen et al. \(2005\)](#). 31
32 32

1 use this size/complexity-dependent exposure to BAPCPA as the basis for a difference-in- 1
 2 differences analysis using data on fleet investment in the U.S. airline industry. My results 2
 3 suggest a nearly 14% reduction in capacity by large firms relative to small ones in the years 3
 4 following the reform. 4

5 Second, I develop a structural empirical model to isolate and quantify the effects of 5
 6 long-run contracting and reorganization on oligopoly investment. The model allows firms 6
 7 to both enter and exit Chapter 11 in a continuous-time, discrete-choice, dynamic game, 7
 8 which I estimate using data on airline capacity, bankruptcy, and profit. According to my 8
 9 estimates, BAPCPA roughly doubled the expected cost of Chapter 11 bankruptcy. 9

10 Third, using the parameters estimated from the structural model, I simulate two counter- 10
 11 factual scenarios. In the first, I simulate equilibrium behavior as though BAPCPA had never 11
 12 been passed, finding an increase in industry capacity of about 5%. This analysis suggests 12
 13 that BAPCPA may have played a role in the “capacity discipline”⁷ observed in the airline 13
 14 industry after 2005. While the phenomenon has been well documented and discussed since 14
 15 that time, explanations for its persistence have been little more than conjectures. This paper 15
 16 offers a new and evidence-based mechanism, namely, an underlying change in bankruptcy 16
 17 law may have made holding capacity less desirable. In the second scenario, I simulate a 17
 18 new equilibrium in which reorganization is prohibitively costly, allowing me to measure 18
 19 the overall effect of the Chapter 11 option (i.e. in addition to Chapter 7 liquidation) on 19
 20 industry capacity. I find that eliminating Chapter 11 reduces total industry capacity by as 20
 21 much as 20%, suggesting that the relatively debtor-friendly nature of insolvency policy in 21
 22 the U.S. tends to increase investment overall. 22

23 The airline industry presents the ideal context in which to test the link between invest- 23
 24 ment and bankruptcy for three main reasons. First, the volatility of air travel demand and the 24
 25 prevalence of contractual labor and capital lease agreements in this industry make Chapter 25
 26 11 especially appealing for distressed airlines. That is, they heavily use long-term contracts, 26
 27 and they face volatile demand that sometimes necessitates breaching those contracts. Sec- 27
 28 ond, the prevalence of bankruptcy in the industry suggests it may be strategically used. To 28
 29

30 ⁷While no precise definition for this term is provided in industry publications, slow or moderated investment 30
 31 during periods of high demand coupled with a willingness to disinvest during periods of low demand will serve 31
 32 as my working definition in this paper. 32

1 the extent that forward-looking firms internalize the reorganization option, they may tend 1
2 to over-commit to long-term contracts, resulting in rampant bankruptcy when demand falls. 2
3 The notorious insolvency of U.S. airlines fits this pattern. Third, anecdotal evidence sug- 3
4 gests that an airline's Chapter 11 filing can be strategically timed, indicating that bankruptcy 4
5 is far from an exogenous event. 5

6 The remainder of this paper proceeds as follows: In Section 2, I review the relevant lit- 6
7 erature before providing necessary background on bankruptcy law and the airline industry 7
8 in Section 3. These sections provide context for my three-part empirical strategy, described 8
9 in Section 4, and the associated data on capacity, bankruptcy, and profit that I use, which is 9
10 described in Section 5. Section 6 presents all results and counterfactuals before concluding. 10
11 Note also the availability of an Online Appendix, which analyzes an illustrative theoreti- 11
12 cal model and provides additional details on bankruptcy provisions, reforms, and trends 12
13 relevant to the airline industry. 13

14 14

15 15

16 2. LITERATURE REVIEW 16

17 17

18 A number of studies have combined insights from industrial organization, corporate fi- 18
19 nance, and law and economics, yet none has shown how Chapter 11 can influence capital 19
20 investment under imperfect competition. In this section I summarize the relevant compo- 20
21 nents of these three strands of literature, highlighting this important gap. My paper also 21
22 augments the considerable body of work on airline competition by proposing a mechanism 22
23 for capacity discipline. 23

24 Beginning with Arrow (1968) and Spence (1979), industrial economists have recognized 24
25 the important role of investment (ir)reversibility for firm behavior. Porter (1980) establishes 25
26 the importance of commitment for competitive strategy, while Pindyck (1986) demon- 26
27 strates that irreversibility of investment reduces optimal capacity relative to an environ- 27
28 ment where investment decisions are reversible. This seminal paper identified the real op- 28
29 tion value associated with delaying such an investment when demand is uncertain. Jou and 29
30 Lee (2008) extend earlier analyses in the real options literature to an oligopolistic industry. 30
31 Their model incorporates choices over capital structure, investment scale and timing, and 31
32 bankruptcy filing, but by treating investments as fixed and bankruptcy as final, the authors 32

1 necessarily abstract away from both the evolution of capital in the industry and the transient 1
 2 nature of Chapter 11 protection, thereby overlooking the question at hand in this paper.⁸ 2

3 A related literature pertains to strategic capacity decisions, and capacity buildup is often 3
 4 described as an effective means of deterring entry. [Eaton and Lipsey \(1979\)](#), for example, 4
 5 show that anticipated growth leads to buildup of capacity by incumbents that, when com- 5
 6 pared to the decisions of potential entrants, appears premature. [Besanko et al. \(2010\)](#) ex- 6
 7 amines a dynamic model of capacity investment, finding that greater product homogeneity 7
 8 and capacity reversibility promote capacity preemption races. My results tell a similar story. 8
 9 That is, when reorganization becomes more costly, investment becomes less reversible, and 9
 10 capacity build-up during good states of the world declines. Relative to this strand of litera- 10
 11 ture, then, the key contribution of my paper is to demonstrate how this sort of behavior can 11
 12 arise from a change in insolvency policy, which is not traditionally associated with models 12
 13 of capacity build-up in I.O. 13

14 While many authors have examined market competition and entry in airlines, few have 14
 15 covered capacity investment, and none at the industry level.⁹ Relating price and capac- 15
 16 ity competition at the market level, [Snider \(2009\)](#) develops a dynamic structural model 16
 17 in which cost asymmetries between large and small air carriers lead to predatory behavior. 17
 18 Another example is [Röller and Sickles \(2000\)](#), which measures market power using conjec- 18
 19 tural variation in the European airline industry. The authors employ a two-stage framework 19
 20 in which firms first purchase airplanes, and then compete in prices. [Aguirregabiria and Ho](#) 20
 21 ([2010](#)) analyze a dynamic model of oligopolistic airline competition to identify factors in- 21
 22 fluencing the adoption of hub-and-spoke networks. They find that the cost of entry on a 22
 23 route declines with the airline's scale of operation at the endpoints of the route, and for 23
 24 large carriers, strategic entry deterrence is also an important factor.¹⁰ In contrast to these 24
 25 studies, my focus is industry-level capacity, abstracting away from network development 25
 26 and market entry. 26

27

28 _____ 28
 29 ⁸For the same reason, the terminal nature of war-of-attrition models, such as the one in [Takahashi \(2015\)](#), would 29
 be inappropriate for examining Chapter 11 reorganization.

30 ⁹For an overview of developments in market-level entry models, see [Li et al. \(2022\)](#) and citations therein. 30

31 ¹⁰Along similar lines, earlier work by [Hendricks et al. \(1997\)](#) showed that operating a spoke market at a loss 31
 could be a dominant strategy for a hub carrier in response to entry by another firm into the spoke market. 32

1 While studies of bankruptcy in the airline industry examine both the market- 1
2 industry-level behavior of firms in financial distress, they ignore the dynamic interplay 2
3 between bankruptcy and capital investment. For example, [Ciliberto and Schenone \(2012\)](#) con- 3
4 clude that bankrupt airlines reduce prices under bankruptcy protection and increase them 4
5 after emerging from bankruptcy, while competitors' prices do not change significantly.¹¹ 5
6 The authors also find that bankrupt airlines permanently prune overall route structures, 6
7 reduce flight frequency, and shed capacity. In particular, relative to pre-bankruptcy figures, 7
8 routes, frequency, and capacity fall by about 25% under bankruptcy protection, and by an- 8
9 other 25% upon emergence from Chapter 11.¹² Not surprisingly, [Jayanti and Jayanti \(2011\)](#) 9
10 show that an airline's bankruptcy filing or shutdown is good news for equity-holders of ri- 10
11 val airlines, while emergence of a carrier from bankruptcy generally reduces rivals' firm 11
12 value. Whereas these papers study what happens *during* bankruptcy, I examine the role 12
13 bankruptcy law plays in determining what happens *outside* of bankruptcy as well. 13

14 Any episode of insolvency presupposes the presence of debt, so before describing the 14
15 impact of bankruptcy law on firms' investment decisions, we must acknowledge the more 15
16 general role of capital structure on those decisions. Since at least the 1980s, economists 16
17 have recognized that capital structure may influence product market competition. Viewing 17
18 bankruptcy as default-induced exit, [Brander and Lewis \(1986, 1988\)](#) describe two effects. 18
19 The "limited liability effect" captures the incentive a firm will have to pursue riskier prod- 19
20 uct market strategies because equity holders do not share in downside risk below the point 20
21 of bankruptcy. The "strategic bankruptcy effect" captures the incentive for a firm to pur- 21
22 sue product market strategies that will increase the likelihood of competitor bankruptcy, 22
23 which is contingent upon competitors' financial structures. To isolate the linkages between 23
24 financial markets and product markets, [Brander and Lewis \(1986\)](#) treat capital investment 24
25 as fixed, allowing firms to choose their debt/equity ratios in the first stage of a two-stage 25
26 duopoly model.¹³ The limited liability effect they describe is therefore solely due to short- 26
27

28 ¹¹Earlier work by [Borenstein and Rose \(1995\)](#) and [Busse \(2002\)](#) also finds that firms in poor financial condition 28
29 are more likely to reduce prices. 29

30 ¹²Earlier work by [Borenstein and Rose \(2003\)](#) suggested modest declines in service levels as a result of 30
31 bankruptcy. 31

32 ¹³One might wonder why I do not simply extend this model to allow for another stage in which firms choose 32
33 capital investment, either before or after choosing capital structure. First, in the [Brander and Lewis \(1986, 1988\)](#) 32

1 run competition in output effected through changes in variable inputs. Linking capital struc- 1
 2 ture to input decisions is [Matsa \(2010\)](#), which demonstrates how the presence of collective 2
 3 bargaining agreements can impact the choice of debt levels. Abstracting away from the 3
 4 capital investment decision allows the aforementioned authors to focus on capital struc- 4
 5 ture decisions and to avoid the additional effects of commitment, studied by [Dixit \(1980\)](#), 5
 6 [Eaton and Lipsey \(1980\)](#), [Brander and Spencer \(1983\)](#), and others. Whereas [Brander and](#) 6
 7 [Lewis \(1986\)](#) and [Matsa \(2010\)](#) linked the capital structure decision with output market 7
 8 strategies, holding investment levels fixed, I will ignore the capital structure decision to 8
 9 identify how changes in bankruptcy law can influence capital investment decisions that are 9
 10 otherwise irreversible. The interested reader should review the citations within [Brander and](#) 10
 11 [Lewis \(1986, 1988\)](#) for foundational articles on capital structure choice, and in particular, 11
 12 for exceptions to the [Modigliani and Miller \(1958\)](#) theorems.¹⁴ 12

13 With respect to the bankruptcy decision itself, the corporate finance literature has adopted 13
 14 endogenous liquidation as the standard model, beginning with [Leland \(1994\)](#) and [Leland](#) 14
 15 and [Toft \(1996\)](#), but recent work has begun to incorporate the reorganization option.¹⁵ 15
 16 Despite these advances, corporate finance models of capital investment and/or capital structure 16
 17 understandably focus on the financing choices of firms, primarily in single-agent settings. 17
 18 [Suo et al. \(2013\)](#) and references therein provide a few examples. [Broadie et al. \(2007\)](#) ex- 18
 19 tend these models of optimal capital structure by allowing for reorganization under Chap- 19
 20 ter 11 in addition to liquidation under Chapter 7. [Hamoto and Correia \(2012\)](#) provide a 20
 21 nice overview of the different models of default, liquidation, and bankruptcy, identifying 21
 22 [Broadie et al. \(2007\)](#) as the only paper to incorporate Chapter 11, although several authors 22
 23

24 models, bankruptcy is viewed as liquidation/exit, and my primary purpose in this paper is to analyze the most 24
 25 salient alternative, reorganization. Second, while understanding the full strategic interplay among investment, 25
 26 capital structure, insolvency policy, and product market competition is undoubtedly crucial for our understanding, 26
 27 I view isolating the effect of insolvency policy on investment behavior as a necessary first step. Third, a dynamic 27
 28 model which captures the ups and downs of the market is necessary for realistically modeling investment and 28
 disinvestment.

29 ¹⁴A good reading list would certainly begin with [Meckling and Jensen \(1976\)](#), [Myers \(1977\)](#), and [Bulow and](#) 29
 30 [Shoven \(1978\)](#).

31 ¹⁵See, for example, the excellent work of [Sundaresan and Wang \(2007\)](#), [Broadie et al. \(2007\)](#), [Li et al. \(2014\)](#), 31
 32 [Nishihara and Shibata \(2016\)](#), [Corbae and D’Erasco \(2021\)](#), [Antill and Grenadier \(2019\)](#), and references therein. 32

1 separate the default and liquidation decisions. More recently, two fantastic papers by [Antill](#) 1
 2 and [Grenadier \(2019\)](#) and [Corbae and D'Erasco \(2021\)](#) both incorporate the liquidation 2
 3 vs. reorganization choice. [Antill and Grenadier \(2019\)](#) develop a model of optimal capital 3
 4 structure that includes dynamic bargaining between creditors and equityholders. [Corbae](#) 4
 5 and [D'Erasco \(2021\)](#) estimate a general equilibrium model of firm dynamics with endoge- 5
 6 nous entry and exit of competitive firms in order to examine the effects upon firm dynamics 6
 7 of a proposed bankruptcy reform. Both of these papers push the frontier forward a great 7
 8 deal, yet both remain focused on the financing decisions of firms and the financial provi- 8
 9 sions of bankruptcy law. Thus, any discussion of the (ir)reversibility of capital investment - 9
 10 and especially its strategic implications - remains untethered to this strand of the literature. 10

11 The law and economics literature on insolvency policy in general, and Chapter 11 re- 11
 12 organization in particular, is detailed and wide-ranging. While this strand of the literature 12
 13 takes quite seriously the strategic interactions amongst debtors, creditors, and other stake- 13
 14 holders, especially during bankruptcy proceedings, strategic interaction amongst rival firms 14
 15 appears absent. Instead, the analysis typically centers on the firm and its stakeholders in or- 15
 16 der to evaluate the efficiency and efficacy of bankruptcy policy, especially the effects of 16
 17 bankruptcy law's provisions on the bargaining process before and during bankruptcy¹⁶; 17
 18 the investment decision during times of financial distress¹⁷; and the efficiency with which 18
 19 the current bankruptcy regime liquidates nonviable entities and resuscitates viable ones.¹⁸ 19
 20 Clearly there is a great deal of overlap here with corporate finance, as incentives (or dis- 20
 21 incentives) for investing and borrowing induced by bankruptcy law have implications for 21
 22 firm value and financial performance. For excellent overviews of the economic thinking sur- 22
 23 rounding bankruptcy, see [Jackson \(1984\)](#), [White \(1989\)](#), and [White \(2007\)](#). With respect 23
 24 to investment in particular, the effect of bankruptcy law generally hinges on the agency 24
 25 conflict between owners and managers in choosing the optimal riskiness of projects un- 25
 26 dertaken. That effect is, in turn, mediated by the treatment of the firm in bankruptcy (i.e. 26
 27
 28
 29

30 ¹⁶See, for example, [Bebchuk and Chang \(1992\)](#). 30

31 ¹⁷See, for example, [Gertner and Scharfstein \(1991\)](#), [Schwartz \(1994\)](#), and [Adler \(1995\)](#). 31

32 ¹⁸See, for example, [White \(1994\)](#) and [Eraslan \(2008\)](#). 32

1 priority rules, deviations from them, provisions governing the bargaining process, etc.).¹⁹ 1
 2 [Bebchuk \(2002\)](#) provides thorough coverage of this issue in presenting an analysis of the 2
 3 *ex ante* costs of deviating from the absolute priority rule in bankruptcy. [Rasmusson \(1994\)](#) 3
 4 examines the *ex ante* investment effects of then-current bankruptcy law as well as various 4
 5 proposed reforms. He notes well that bankruptcy changes more than just capital and own- 5
 6 ership structure. In many cases, it leads to changes in leadership and operations as well, 6
 7 and the prospect of these changes has important implications for *ex ante* behavior. In this 7
 8 paper, I focus on the malleability of long-run contracts in Chapter 11, and I demonstrate 8
 9 that it does indeed matter for *ex ante* investment decisions in the context of imperfect com- 9
 10 petition. Whether we are concerned with the efficiency of bankruptcy policy, its effects 10
 11 on borrowing and capital structure, or its potential to alter the product market behavior of 11
 12 firms, understanding how it influences *ex ante* investment in this context is an important 12
 13 dimension of the discussion. With that in mind, let us proceed. 13

14

15 3. BACKGROUND

16 In this section I present three elements of background information that together motivate 16
 17 the link between investment and bankruptcy in the U.S. airline industry. First, I explain 17
 18 some of a firm's key risks and rewards of filing for bankruptcy in the U.S. Second, I describe 18
 19 the 2005 bankruptcy law reform in detail. Third, I explain the appeal of Chapter 11 specific 19
 20 to airlines in the U.S., demonstrating that airline bankruptcy patterns are consistent with 20
 21 strategic use of Chapter 11. 21

22

23 3.1. *Bankruptcy*

24

25 3.1.1. *Bankruptcy Basics*

26 The traditional economic justification²⁰ 26 for bankruptcy protection is as a solution to a
 27 collective action problem, namely, the allocation of an insolvent firm's assets. In the U.S., 27
 28

29 ¹⁹An important exception in that regard is [Rose-Ackerman \(1991\)](#) and related works that consider the behav- 29
 30 ioral implications of a manager's personal aversion to bankruptcy on account of overinvestment in the company 30
 31 itself. 31

32 ²⁰For an extended treatment, see [Jackson \(1984\)](#). 32

1 when a firm defaults²¹ on a debt obligation, the creditor whose claim is in default has the 1
2 right to sue for relief in state court. Secured creditors have the additional right to seize 2
3 the collateral underlying their claims. A financially distressed firm with many creditors 3
4 is therefore liable to become a tragedy of the commons. When left to its individual legal 4
5 rights, each creditor has incentive to secure as big a share of the firm's assets as possible, 5
6 as quickly as it can, to the detriment of the other creditors and the company's chances 6
7 for success. Much like a bank run, this kind of behavior can turn temporary insolvency 7
8 into complete financial ruin. Bankruptcy law provides a way of collectivizing creditors' 8
9 behavior, with the goal of avoiding inefficient firm failures. 9

10 To this end, the U.S. Bankruptcy Code offers two forms of bankruptcy protection to 10
11 business entities: liquidation under Chapter 7 and reorganization under Chapter 11. Both 11
12 processes begin with an "automatic stay" that protects the firm from legal action and asset 12
13 seizure, but they differ in their subsequent treatment of insolvency. Chapter 7 is pursued 13
14 (voluntarily or otherwise) when a company is unlikely to return to profitability, even with 14
15 substantially reduced debt obligations. It provides for an orderly closure of the company, 15
16 sale of assets, and repayment of claims. Chapter 11 is afforded to companies that have 16
17 a reasonable chance of remaining a going concern, particularly if they renegotiate their 17
18 obligations to creditors, vendors, employees, tax authorities, and other stakeholders. Under 18
19 Chapter 11, a financially distressed corporation can typically negotiate away substantial 19
20 portions of debt and other liabilities, sometimes on the order of cents on the dollar. 20

21 The courtroom is not the only place a firm's financial distress can be resolved, of course. 21
22 Litigation is costly, and most secured creditors would prefer to continue receiving debt 22
23 payments than to own the underlying collateral. Consequently, debt renegotiations (called 23
24 "workouts") are common in the U.S. However, as [White \(2007\)](#) points out, the negotiation 24
25 process is imperfect, and workouts can be easily derailed by hold-out creditor classes. In 25
26 their study of 169 instances of financial distress among large public corporations in the 26
27 1980s, [Gilson et al. \(1990\)](#) find that slightly less than half (80) of firms successfully re- 27
28 structure their debt outside of bankruptcy. Success was more likely when firms had greater 28
29

30

 30
31 ²¹Note that default need not be due to failure to make payments. Technical default occurs when one of the 31
32 provisions of the debt agreement is violated (e.g. if working capital, cash on hand, or liquidity ratios fall below 31
32 pre-specified levels). 32

1 intangible assets, a higher proportion of bank debt, and fewer distinct creditor classes.²² 1
 2 The 89 unsuccessful firms in the study all filed for Chapter 11. 2

3 3

4 3.1.2. *The Bankruptcy Process* 4

5 Here I briefly explain the overall process of Chapter 11 and Chapter 7 and describe the 5
 6 history of bankruptcy law in the U.S. For a more thorough treatment, see [White \(2007\)](#) and 6
 7 [Branch et al. \(2007\)](#). 7

8 Under Chapter 7, a court-appointed or elected trustee manages the orderly shutdown and 8
 9 liquidation of the company. The trustee's goal is to convert the company's assets to cash as 9
 10 quickly as possible, while seeking to maximize the value received for those assets. Since 10
 11 even distressed companies are typically worth more than the sum of their parts, sale of 11
 12 substantially all of the firm's assets to a single party is not uncommon. The proceeds are 12
 13 then distributed to claimants according to the absolute priority rule (APR). Also known as 13
 14 liquidation preference, the APR dictates the order in which unsecured claims are paid and 14
 15 stipulates that no class of creditor be paid until all more senior classes have been paid in 15
 16 full. In order of priority, the major divisions are as follows: 16

- 17 1. Administrative Claims (including legal fees) 17
- 18 2. Statutory Claims (including certain unpaid taxes, rents, wages, and benefits) 18
- 19 3. Unsecured Creditors' Claims (including trade credit, bonds, and legal claims) 19
- 20 4. Post-filing Interest on Paid Claims 20
- 21 5. Equity 21

22 Secured creditors are notably absent from the APR ordering because their claims on particular 22
 23 assets remain valid in bankruptcy. Creditors with secured claims are entitled to their 23
 24 collateral or its fair market value (usually replacement value) before any unsecured claims 24
 25 are paid. 25

26 Whereas Chapter 7 outlines the orderly paying of creditors' claims, Chapter 11 provides 26
 27 an orderly way to renegotiate those claims. While the ultimate goal of Chapter 11 27
 28 reorganization is reemergence from bankruptcy as a going concern, many firms are unsuccessful. 28
 29 Failure can take two forms, conversion or dismissal, each of which results from 29

30 30

31 ²²Debt restructuring outside of bankruptcy typically requires unanimous consent of all creditors whose claims 31
 32 are in default, so the likelihood that at least one creditor holds out increases in the number of creditors. 32

1 the bankruptcy judge's approval of the specified motion. A motion to convert the case to 1
2 Chapter 7 will, if granted, lead to liquidation. A motion to dismiss the case will, if granted, 2
3 lift the automatic stay and remove the proceeding from bankruptcy court. In the case of dis- 3
4 missal, negotiations with creditors can continue, but creditors now have the option to seize 4
5 collateral or sue the debtor in state court. [Iverson \(2018\)](#) and [Morrison \(2007\)](#) indicate that, 5
6 in most cases, dismissal is tantamount to liquidation. 6

7 Chapter 11 centers on the firm's reorganization plan, which outlines debt repayment and 7
8 firm restructuring. The plan must also estimate firm value as a going concern and show 8
9 that it exceeds liquidation value. Upon proposal, the judge must first approve the disclosure 9
10 statement (the plan), before it can be voted on by creditors. If, at each level of seniority, at 10
11 least 50% of creditors by number and 2/3 of creditors by value accept the plan, then it is 11
12 deemed accepted by that class.²³ Even after creditors have voted on the plan, the judge still 12
13 has the ability to approve or reject the plan. Most commonly, the judge may approve a plan 13
14 that was voted down if he or she feels that doing so is in the best interest of the firm. Such 14
15 a decision is known as a "cram-down" and requires that the plan be feasible, filed in good 15
16 faith, and superior to liquidation in terms of creditors' recovery. 16

17 A reorganization plan need not be approved on the first try (or the second or third, for 17
18 that matter). The number of attempts is really only limited by the time and patience of 18
19 the bankruptcy judge. For the first 120 days of bankruptcy, the debtor is given the exclusive 19
20 right to file a reorganization plan. Often 120 days will be far from enough time to formulate 20
21 a plan that is agreeable to all parties, so a judge may grant extensions of this exclusivity 21
22 period if he or she sees fit. Once this period expires, any creditor group or case trustee 22
23 may file an alternative plan and seek approval. Figure 1 illustrates the overall bankruptcy 23
24 process. 24

25

26 3.1.3. *Bankruptcy Provisions of Interest*

27

28 Of particular import in the context of the airline industry are Sections 1110, 1113, and 27
29 1114 of the Bankruptcy Code, which deal with aircraft leases, collective bargaining agree- 28
30 ments, and retiree benefits, respectively. Negotiating more favorable terms with lessors, 29
31

31 ²³Note that, in order to vote, a creditor must be impaired, in that it will receive less than 100% recovery under 31
32 the plan. 32

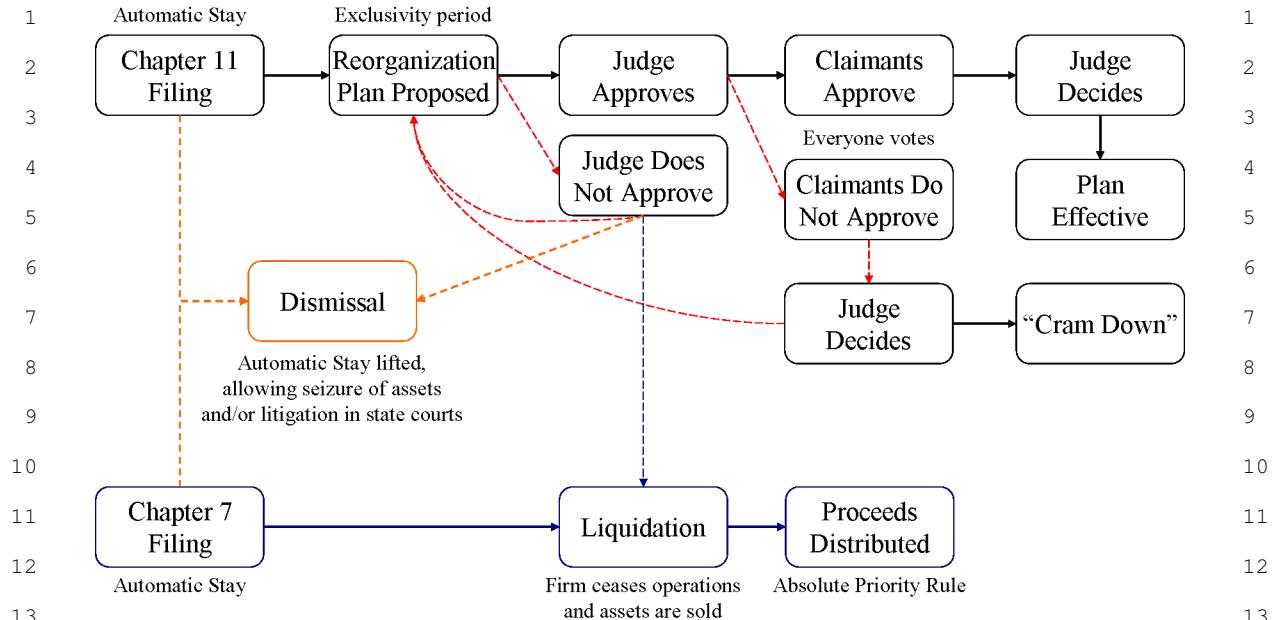


FIGURE 1.—The Bankruptcy Process

unions, and retirees can yield enormous cost savings for airlines in Chapter 11, and each of these provisions gives the debtor considerable bargaining power, owing to the unattractive outside options (i.e. contract abrogation) of their respective bargaining partners.²⁴

3.2. BAPCPA 2005

3.2.1. Overview of BAPCPA 2005

In order to say whether or not bankruptcy law matters for investment, I need to observe the investment response to an exogenous change in bankruptcy law. To do so I exploit the Bankruptcy Abuse Prevention and Consumer Protection Act of 2005 (BAPCPA). This section summarizes the reform, providing evidence that it increased the expected cost of filing Chapter 11, especially for larger firms.

Several times throughout the 19th century, the U.S. Congress established and repealed bankruptcy legislation, but not until the Bankruptcy Act of 1898 did any set of rules gain permanence.²⁵ While bankruptcy law experienced minor changes in subsequent decades,

²⁴For section-specific details, see the Online Appendix.

²⁵For a brief history of bankruptcy in the U.S., see Bak et al. (2008).

1 the Bankruptcy Reform Act of 1978 was its last major overhaul. The 1978 Act, commonly 1
2 referred to as the Bankruptcy Code, was such a substantial change that its effect on filing 2
3 rates has been the subject of considerable research.²⁶ In 1994, the Bankruptcy Reform Act 3
4 established a commission to review the Bankruptcy Code, and that commission eventually 4
5 proposed BAPCPA, widely viewed as the most substantial change since 1978. 5

6 Although its primary target was consumer bankruptcy abuse, BAPCPA made a number 6
7 of substantive changes to Chapter 11 designed to prevent large corporations' abuse of the 7
8 bankruptcy option by making Chapter 11 filings more difficult. [Coelho \(2010\)](#) finds that 8
9 the market response to public announcements of bankruptcy filing has been more severe 9
10 since the reform relative to the pre-BAPCPA period, lending empirical validity to what 10
11 [Gilson \(2010\)](#) and many other scholars had already agreed upon: the new Bankruptcy Code 11
12 restricts debtor protection and reduces the likelihood of a successful reorganization. In 12
13 support hereof, [Coelho \(2010\)](#) cites [Altman and Hotchkiss \(2010\)](#); [Gottlieb et al. \(2009\)](#); 13
14 and [Ayotte and Morrison \(2009\)](#) as well.²⁷ [Iverson \(2018\)](#)'s conclusion that busy judges 14
15 more often leave firms to their own devices agrees with the creditor-friendly perception of 15
16 BAPCPA as well. Since bankruptcy court judges see both business and consumer cases, the 16
17 drastic decline in consumer bankruptcy filings following BAPCPA substantially reduced 17
18 judges' overall caseloads. [Iverson \(2018\)](#) identifies this effect and suggests that judges 18
19 with lighter caseloads are more inclined to dismiss or convert Chapter 11 cases, thereby 19
20 increasing the probability of liquidation. 20

21 Even before the reform went into effect, it was commonly expected to shift bargaining 21
22 power to creditors. While uncertainty surrounded the manner in which BAPCPA would 22
23 eventually be implemented in the courts, the consensus among legal professionals was that 23
24 BAPCPA would probably be bad for debtors, especially large ones and those with particular 24
25 classes of assets. I now detail the reform components most relevant for large companies, 25
26 relying collectively on [Sprayregen et al. \(2005\)](#), [Herman \(2007\)](#), [Selbst \(2008\)](#), and [Levin 26](#)
27 ([2005](#)). 27

28

29

²⁶See, for example, [Bhandari and Weiss \(1993\)](#), [Domowitz and Eovaldi \(1993\)](#), [White \(1987\)](#), [Boyes and Faith 29](#)
30 ([1986](#)), and [Nelson \(2000\)](#) 30

31 ²⁷Other authors have investigated the effects of BAPCPA, but most focus on its impact upon consumer 31
32 bankruptcy and related behaviors. [Gross et al. \(2021\)](#) is one recent example. 32

1 3.2.2. *Changes of Interest* 1

2 The first and arguably most important change was the Act's limitation of the exclusivity 2
 3 period for filing a plan of reorganization. The exclusivity period is the time during which 3
 4 the company has the sole right to put forth a plan of reorganization for consideration by 4
 5 stakeholders. Once the exclusivity period has expired, other parties, such as creditor com- 5
 6 mittees or labor unions, can put forth alternative plans and call for a vote. Under the old 6
 7 regime, large corporations were regularly granted extensions lasting up to several years.²⁸ 7
 8 The 2005 reform set a hard and fast limit of 18 months for exclusivity, and 20 months for 8
 9 acceptance of an exclusive plan. These limits, as [Selbst \(2008\)](#) explains, were "aimed at 9
 10 curbing the perceived abuse of debtors spending too long in Chapter 11 and using exclusiv- 10
 11 ity to coerce concessions from creditors." The new limit increased the likelihood of losing 11
 12 exclusivity, especially for large companies. In a 2005 report by law firm Kirkland & Ellis, 12
 13 James Sprayregen²⁹ and co-authors explained that, "...in many cases, changes in collec- 13
 14 tive bargaining agreements and pension plans...and similar issues cannot be resolved in 20 14
 15 months." Moreover, BAPCPA's change to exclusivity was likely to have a greater impact on 15
 16 airlines than on industry in general. Before the reform came into effect, airlines were about 16
 17 twice as likely as other firms to exceed the 20-month threshold for acceptance of a plan.³⁰ 17
 18 My own conversations with legal experts confirm that, at least for the largest of firms, 18
 19 BAPCPA's curtailment of the exclusivity period alone turned the process of reorganization 19
 20 into almost assured liquidation. 20

21 Coupled with the reduced exclusivity period is a slightly increased scope for dismissal 21
 22 or conversion of a bankruptcy case. By limiting the discretion of the bankruptcy judge, 22
 23 the Act made it more likely for courts to convert a reorganization into a liquidation if 23
 24 procedural requirements are not met. Firms are not only more likely to lose control of the 24
 25 reorganization process by losing exclusivity, but also more likely to lose reorganization as 25
 26

27 _____ 27
 28 ²⁸United Airlines, for example, required three years before a reorganization plan was confirmed. 28

29 ²⁹Sprayregen's relevant reorganization expertise includes representation of United Airlines, Japan Airlines, and 29
 29 Trans World Airlines (TWA).

30 ³⁰Among similarly-sized public companies filing for Chapter 11 between 1980 and 2005 that eventually 30
 31 emerged from bankruptcy, 32% of non-airline companies took longer than 608 days (the new statutory maxi- 31
 32 mum) to confirm an exclusive plan of reorganization, versus 62% of airline companies during this time. 32

1 an option in the event of dismissal or conversion. Compounding this threat is the decline in
 2 consumer bankruptcy filings that followed BAPCPA, which [Iverson \(2018\)](#) associates with
 3 higher probability of dismissal or conversion for Chapter 11 cases.

4 Further changes - all of which favored creditors - include reforms in the treatment of em-
 5 ployee wages and benefits, nonresidential property leases, and recently delivered goods.³¹
 6 On the whole, therefore, the 2005 reform clearly appears to have increased the probability
 7 of liquidation, thereby raising the expected cost of Chapter 11 from the firm's perspective.

9 3.3. *Bankruptcy in the U.S. Airline Industry*

10 Airline bankruptcy and airline capacity are inextricably linked. Every legacy air carrier
 11 has undergone bankruptcy, each time ranking among the top ten largest bankruptcies of the
 12 year by asset value.³² [Ciliberto and Schenone \(2012\)](#), [Benmelech and Bergman \(2008\)](#), and
 13 others demonstrate that bankruptcy is a common time to cut capacity and right-size the la-
 14 bor force, and a number of provisions in the Bankruptcy Code make Chapter 11 especially
 15 appealing for airlines looking to downsize. If abrogating contracts in Chapter 11 is less
 16 costly than breaching them outside of bankruptcy court, then firms will be more willing
 17 to sign those contracts in the first place (i.e. invest in capacity) relative to their behav-
 18 ior in a world without Chapter 11. The pattern of rapid investment followed by extensive
 19 bankruptcy that we would expect to find is clearly evident in the airline industry.³³

20 Not only is bankruptcy a valuable option, but there is evidence to suggest it may be
 21 strategically timed. Former CEO of American Airlines, Robert Crandall, suggested in an
 22 interview that the company should have chosen to file for Chapter 11 during the earlier wave
 23 of bankruptcies by large legacy carriers.³⁴ “I would have done it then because I knew that
 24 [the other major airlines] would emerge with a huge cost advantage,” he says. More than
 25 just a voluntary strategy for managing financial distress, the bankruptcy option can also
 26 be misused. [Delaney \(1992\)](#) details Continental Airlines’ 1983 bankruptcy filing, starkly

28 ³¹These reforms, along with a discussion of non-legislative changes to the bankruptcy process, are discussed in
 29 more detail in the Online Appendix.

30 ³²Top 20 largest public bankruptcies by year, available since 1995 from www.BankruptcyData.com.

31 ³³For an excellent overview of the domestic commercial airline industry, see [Borenstein and Rose \(2013\)](#).

32 ³⁴<http://www.charlierose.com/view/interview/12228>

1 illustrating its strategic intent and abusive nature. The more general case for bankruptcy's 1
 2 strategic nature is debatable. [Flynn and Farid \(1991\)](#) and [Tavakolian \(1995\)](#) argue that 2
 3 bankruptcy has lost much of its previous stigma and grown into a viable business strategy 3
 4 for turning around failing companies. But [Moulton and Thomas \(1993\)](#) provide empirical 4
 5 evidence that, if it is a deliberate strategy, it is not usually a successful one.³⁵ 5

6 Perhaps the best evidence for both the strategic timing of Chapter 11 filings and the 6
 7 potential impact of BAPCPA on bankruptcy costs is the fact that both Delta Air Lines 7
 8 and Northwest Airlines independently filed for Chapter 11 in September of 2005, just one 8
 9 month before BAPCPA came into effect. Industry experts claim that BAPCPA played a 9
 10 key role in Northwest's decision, and that Delta's filing was long expected, suggesting the 10
 11 company had sufficient ability to time the decision.³⁶ 11

12 4. EMPIRICAL STRATEGY 12

13 My empirical approach to studying the link between bankruptcy and investment is three- 13
 14 fold. First, I perform a difference-in-differences analysis of airline data to test whether 14
 15 investment behavior changed following BAPCPA. Second, I estimate a dynamic, structural 15
 16 model of investment and bankruptcy to measure the incremental firm-level cost due to that 16
 17 reform. Finally, I use the estimated parameters to simulate two counterfactual scenarios 17
 18 in which 1) BAPCPA was never enacted, and 2) Chapter 11 reorganization is effectively 18
 19 prohibited. 19

21 4.1. *Difference-in-Differences Model* 21

22 While airline fleet investment has fallen since BAPCPA was enacted, further analysis is 22
 23 necessary if we are to attribute the decline to an increase in bankruptcy cost. To separate 23
 24 the effect of a bankruptcy cost change from the effects of time, demand, or other macroe- 24
 25 economic variables, we would like to compare BAPCPA's effect on investment behavior 25
 26 across two groups of airlines - one that was affected by the change, and one that was not. 26
 27 Here I describe my preliminary difference-in-differences approach to test that implication 27
 28 by comparing large and small airlines before and after BAPCPA. 28

30 _____ 30
 31 ³⁵[Ciliberto and Schenone \(2012\)](#) provide additional evidence for the strategic use of bankruptcy in airlines. 31

32 ³⁶See, for example, [Maynard \(2005\)](#) and [Corridore \(2005\)](#). 32

1 The specifics of the BAPCPA reform suggest that its effects will have been felt most 1
2 by large and/or highly complex firms, significantly reducing their likelihood of successful 2
3 reemergence from Chapter 11. Intuitively, the more parties with which a firm must nego- 3
4 tiate, the slower it will expect to gain support for an exclusive plan, making conversion, 4
5 dismissal, or cram-down more likely. I use firm size³⁷ as a proxy for complexity, based on 5
6 the observation that larger entities tend to have more creditors, more bankruptcy commit- 6
7 tees, more entities filing joint bankruptcy petitions, and so forth.³⁸ I verify that firm size is 7
8 correlated with bankruptcy duration using Lynn LoPucki's database of public firm filings 8
9 and outcomes. After controlling for demand, seasonality, and firm type, I find no evidence 9
10 that larger firms reduced investment more than smaller firms during the post-BAPCPA era. 10

4.2. Structural Model

13 In this section I describe the structural model that will be estimated and used to perform 13
14 counterfactual simulations. The model benefits my analysis in three critical ways. First, the 14
15 continuous-time approach is both intuitive and computationally tractable to solve. Second, 15
16 the model produces numerical comparative statics that can be independently supported by 16
17 the illustrative theoretical model I provide in the Online Appendix. Finally, the model lends 17
18 itself well to estimation using conditional choice probability (CCP) methods, which greatly 18
19 expedite computation. 19

To empirically analyze the relationship between reorganization and investment behavior, only a dynamic model is suitable. Most structural dynamic models in the airline literature describe market-level decisions, which are complicated in their own right, but in this case I must look at the industry as a whole. The number of players in my model is therefore necessarily large, making the computation of Markov Perfect Equilibria (MPE) for a traditional discrete-time, simultaneous-move model (i.e. an [Ericson and Pakes \(1995\)](#)-style (EP) model) somewhat difficult. One way to ease the computational burden is to assume that firms make decisions based on less (or less precise) information. For example, [Aguirregabiria and Ho \(2012\)](#) examine industry-wide route network decisions by making assumptions to simplify the set of payoff-relevant variables for each of 22 airlines. A similar

³¹ ³⁷I measure size as the number of available aircraft seats in the fourth quarter of 2004. 31

³⁸ One might also consider the number of unions, the number of outstanding debt classes, etc. as proxies. 32

1 concept is used more generally by [Weintraub et al. \(2008\)](#), who introduce the concept of 1
 2 oblivious equilibrium to approximate EP models when many firms are involved.³⁹ Another 2
 3 approach, pioneered by [Hotz and Miller \(1993\)](#) and [Hotz et al. \(1994\)](#) and adapted to the 3
 4 I.O. context by [Bajari et al. \(2007\)](#) and others,⁴⁰ has been to estimate players' actual choice 4
 5 probabilities from the data, incorporating them into a dynamic programming framework. 5
 6 The model I employ combines this second approach with a continuous-time model, further 6
 7 expediting computation. 7

8

9 4.2.1. *Setup: Discrete Choices in Continuous Time*

10 A continuous-time, discrete-choice model is an intuitive and computationally tractable 10
 11 way to model interaction among a relatively large number of firms. I now lay down the 11
 12 foundations of this model, following [Arcidiacono et al. \(2016\)](#), henceforth referred to as 12
 13 ABBE (2016). 13

14 Consider a continuous-time, infinite-horizon game following ABBE (2016), in which N 14
 15 firms compete in capacity levels with the option to file for bankruptcy. At any given time, a 15
 16 firm is fully represented by a capacity level $q_i \in Q$ and a bankruptcy state b_i , which equals 16
 17 1 if the firm is under Chapter 11 protection and 0 otherwise. The state of the game is char- 17
 18 acterized by the set of all players' states as well as the demand state, $\alpha \in \{\alpha_{lo}, \alpha_{hi}\}$, and a 18
 19 state governing the bankruptcy regime, ϕ , equal to 0 before the BAPCPA reform and 1 after 19
 20 the reform takes effect on 10/17/2005. Let $\theta \in \Theta$ represent the vector of economic states 20
 21 and $x \in X$ represent the vector of firms' states. Flow profit for firm i is $u_i = u(x_i, x_{-i}; \theta)$. 21

22 The state evolves according to a number of independent, continuous-time processes gov- 22
 23 erning the arrival of move opportunities for nature and for all N players. Nature flips the 23
 24 demand state whenever the opportunity arises, and those opportunities follow a Poisson 24
 25 process with parameter γ . Firm capacity and bankruptcy adjustment opportunities follow 25
 26 separate Poisson processes with parameters λ_a and λ_b , respectively. When a capacity ad- 26
 27 justment opportunity arrives, a firm may choose to remain in its current state, increase 27
 28 capacity by one increment, decrease capacity by one increment, or exit. Exit and entry are 28
 29

30 ³⁹See also extensions to this work, including [Weintraub et al. \(2010\)](#) and [Benkard et al. \(2015\)](#). 30

31 ⁴⁰[Pakes et al. \(2007\)](#), [Pesendorfer and Schmidt-Dengler \(2003\)](#), [Ryan \(2012\)](#), [Dunne et al. \(2006\)](#), and [Aguir- 31
 32 regabiria and Mira \(2007\)](#), to name a few. 32

1 accounted for by adjustment to and from a level of zero capacity. If the firm changes ca- 1
 2 pacity levels, it incurs a potentially asymmetric adjustment cost that depends on whether or 2
 3 not the firm is currently in bankruptcy. When a bankruptcy adjustment opportunity arrives, 3
 4 the firm may choose to remain in its current state or change its bankruptcy status. A firm 4
 5 filing for Chapter 11 incurs no explicit cost to transition into bankruptcy, but a firm exiting 5
 6 bankruptcy incurs an explicit cost to adjust its capital structure via court approval of a plan 6
 7 of reorganization. This cost reflects the bargaining power of creditors and is therefore con- 7
 8 ditional upon the bankruptcy regime. For example, if bankruptcy is more creditor-friendly, 8
 9 then the firm must sacrifice more of its equity upon exit, making reemergence from Chapter 9
 10 11 more costly. 10

11 The structural parameters of interest are the capacity adjustment costs and bankruptcy 11
 12 exit costs, which together make up the set of state transition costs, $\psi_{j,k}$, to transition to 12
 13 state j from state k . Firms maximize expected lifetime profits, discounting at common, 13
 14 continuous rate of time preference ρ and taking their opponents' strategies as given. 14

15 The value to player i of being in state k can be written as 15

$$17 \quad V_{i,k} = \frac{1}{\rho + N\lambda_a + N\lambda_b + \gamma} \left\{ u_{i,k} + \gamma V_{i,l(\text{demand},k)} \right. \\ 18 \quad + \lambda_a \mathbb{E} [V_{i,l(i,k;a)}] + \lambda_b \mathbb{E} [V_{i,l(i,k;b)}] \\ 19 \quad \left. + \sum_{i' \neq i} \lambda_a \mathbb{E} [V_{i,l(i',k;a)}] + \sum_{i' \neq i} \lambda_b \mathbb{E} [V_{i,l(i',k;b)}] \right\} \\ 20 \quad 21 \quad 22$$

23 where 23

$$24 \quad 25 \quad \mathbb{E} [V_{i,l(i,k;r)}] = \mathbb{E} \max_{j \in J_{i,k;r}} \{V_{i,l(i,j,k)} + \psi_{jk} + \epsilon_{ij}\} \\ 26 \quad 27 \quad 28$$

29 and 29

$$30 \quad \mathbb{E} [V_{i,l(i',k;r)}] = \sum_{j \in J_{i',k;r}} \sigma_{i',j,k} \mathbb{E} [V_{i,l(i',j,k)}] \\ 31 \quad 32$$

31 and where $r \in \{a, b\}$ is the type of move opportunity (a representing capacity and b rep- 31
 32 resenting bankruptcy), $l(i, j, k)$ is the state resulting from player i making choice j from 32

1 state k , and $J_{i,k;r}$ is the corresponding choice set. When a move opportunity arrives, agents
 2 receive a Type I Extreme Value shock, ϵ_{ij} , to the value of each possible choice, such that
 3 the probability of player i making a particular choice j from state k when the move arrival
 4 type is r takes the familiar logit form:

$$\sigma_{ijk;r} = \frac{\exp(V_{i,l(i,j,k)} + \psi_{jk})}{\sum_{j' \in J_{i,k;r}} \exp(V_{i,l(i,j',k)} + \psi_{j'k})}$$

4.2.2. Structural Model Implications

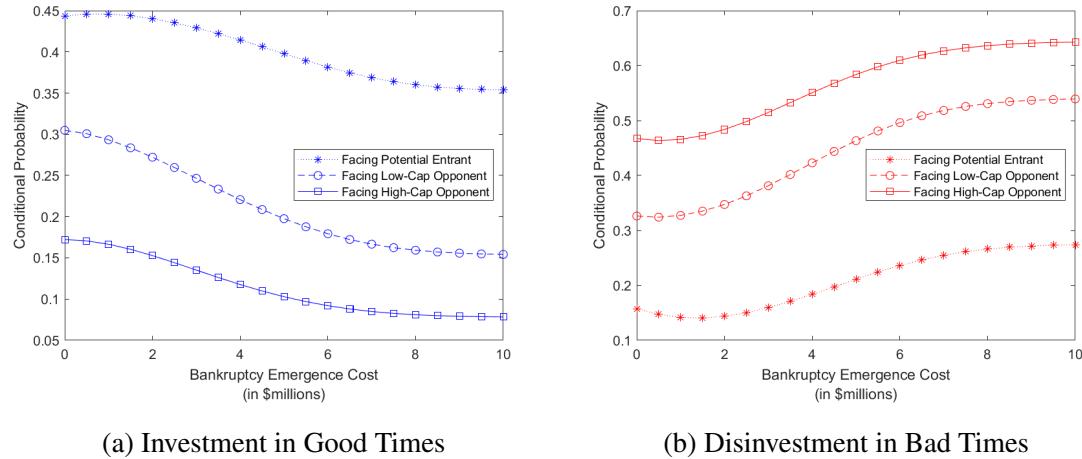
One significant advantage of my structural model is that it generates numerical comparative statics that line up qualitatively with the illustrative theoretical model I provide in the Online Appendix. The model undertaken there is quite simple, and it focuses attention on the irreversibility of investment in a dynamic duopoly. Firms add capital during high-demand states, disinvest capital during low-demand states, and downsize stochastically via costly reorganization. The capacity discipline phenomenon, which I illustrate numerically here, appears in the equilibrium of that model as well. That is, higher reorganization costs reduce a firm's incentive to invest during periods of high demand and increase its likelihood of disinvestment during periods of low demand, suggesting that a policy change which makes Chapter 11 more costly from the firm's perspective will tend to rein in capital investment behavior overall.

I calibrate my structural model as a duopoly with three possible capacity levels: exit (0), low (1), and high (2). Low demand is set to make a player indifferent between exiting and remaining in the market when she is the only incumbent and has low capacity. High demand is set to ensure that both firms earn a profit even when both are at high capacity. Nature's move arrival rate is set to 0.25, implying a change every 4 years to loosely reflect the macroeconomic cycle. Players' move arrival rates are 2, implying 2 choices per year on average, for each choice type. I set the flow cost⁴¹ of holding a unit of capacity to \$2

⁴¹I interpret time in annual units, so a flow cost of c generalizes to a rate of c per year in the absence of discounting. Firms discount at continuous rate of time preference ρ , such that a flow cost of c yields an annualized cost of $\int_0^1 c * e^{-\rho t} dt = c * \frac{1 - e^{-\rho}}{\rho}$. A flow cost of 1 for one year when $\rho = 0.1$ therefore has a present value of about 0.95.

1 million, and the flow cost of being in bankruptcy to \$250,000.⁴² Increasing capacity outside
2 of bankruptcy or decreasing capacity under bankruptcy protection are costless, while the
3 cost of decreasing capacity outside of bankruptcy or increasing capacity within bankruptcy
4 is set to \$4 million.⁴³ The continuous rate of time preference is set to 10%.

5 Figure 2 presents conditional probabilities of increasing and decreasing capacity based
6 on this intuitive calibration. The probability of increasing capacity is conditional on hav-
7 ing low capacity when demand is good, while the probability of decreasing capacity is
8 conditional on having high capacity when demand is bad. Declining investment and rising
9 disinvestment in these two situations reflects the two sides of capacity discipline at work:
10 caution on the upswing and haste in downturns.⁴⁴ More interestingly, this effect appears
11 more pronounced in the presence of competition. Both panels present equilibrium strate-
12 gies under the same three competitive scenarios: 1) when the firm is the only incumbent; 12
13 when the firm faces a low-capacity opponent; and 3) when the firm faces a high-capacity
14 opponent. In panel (a), we see that the effect of an increase in bankruptcy emergence cost
15 has a mild, negative effect on investment when the firm faces only a potential entrant. Ob-
16 serving the slope for each case, we see that this effect is amplified when the firm faces
17 an actual competitor. In panel (b), we find increased disinvestment probability as a func-
18 tion of rising bankruptcy emergence cost, and again we see a stronger effect when the firm
19 faces actual competition. In both cases, the strongest (i.e. steepest) effect occurs when the
20


21 ⁴²According to AMR Corporation's 2010 10-K filing, the company's aircraft rental expense of \$580 million
22 was distributed over a fleet of 241 aircraft under operating lease, suggesting a cost of \$2.4 million per aircraft.
23 While a flow cost of bankruptcy of \$250,000 may seem too low, this conservatism is meant to highlight the role
24 of bankruptcy emergence cost, which I allow to vary from \$0 to \$10 million.

25 ⁴³Again using AMR Corporation's 2010 10-K filing, we can estimate an early lease termination fee of about
26 \$10 million per aircraft, based on a \$94 million charge for grounding 9 Airbus A300s prior to lease expiration.
27 This value roughly amounts to completion of a 5-year lease term, and more than half of AMR's leased fleet had
28 remaining lease terms of 5 years or more. However, a given airline is unlikely to rent more than 50% of its fleet.
29 Setting the adjustment cost to twice the annual lease term is therefore a somewhat conservative figure. Setting
30 the upward adjustment cost under bankruptcy protection to be the same value simply eases explanation of the
31 calibration.

32 ⁴⁴Note that since the probability of filing for bankruptcy falls with bankruptcy emergence cost, the proba-
33 bilities of both investment and disinvestment rise. Therefore, to compare the relative appeal of investment and
34 disinvestment, the plotted probabilities are conditional on choosing not to file for bankruptcy.

¹ firm faces a low-capacity opponent, suggesting that the strategic appeal of commitment is strongest when my opponent is solidly in the game, but lacks a dominant position.

FIGURE 2.—Investment and Disinvestment Probabilities vs. Bankruptcy Emergence Cost

4.2.3. Estimation Using Conditional Choice Probabilities

CCP methods begin by estimating players' state-specific choice probabilities directly from the data. The Type I Extreme Value assumption for the distribution of the choice-specific error term then allows one to combine the estimated CCPs with a guess of the structural parameters to construct the value function. Representing the value function in this way eliminates the computationally costly value function iteration loop characteristic of full-solution methods.⁴⁵ In what follows I explain how to implement this method.

The normal algorithm for nested-fixed-point estimation by maximum likelihood is

1. guess parameters
2. converge to value function
3. compute likelihood using the CCPs associated with that value function and the parameter guess
4. maximize the likelihood by changing the guess

⁴⁵Moreover, CCPs provide a reasonable equilibrium selection criterion by assuming the relevant equilibrium is the one played in the data.

1 CCP estimation skips step 2 of this process, replacing it with a step 0, in which empirical 1
 2 CCPs are estimated from the data. This step is performed only once, outside the maximum 2
 3 likelihood loop. 3

4 The empirical CCPs are estimated as flexibly as possible and can be thought of as a kind 4
 5 of interpolation in which one uses the data to infer the probabilities with which agents will 5
 6 make every relevant choice at every observed node in the state space, even if such choices 6
 7 or their resultant states never occur in the data. I estimate conditional choice probabilities 7
 8 using a linear-in-parameters multinomial logit specification, such that the probability of 8
 9 capacity choice $j' \in J_a$ from state k is 9

$$10 \quad \frac{\exp(X_k \beta_{j'})}{\sum_{j \in J_a} \exp(X_k \beta_j)} \quad 10$$

$$11 \quad \sum_{j \in J_a} \exp(X_k \beta_j) \quad 11$$

$$12 \quad j \in J_a \quad 12$$

13 conditional on the arrival of a capacity move. X_k is a matrix of regressors specific to state k , 13
 14 and β_j is the j th column of β , a matrix of coefficients for which the column associated with 14
 15 the continuation choice is normalized to zero. The set of regressors includes own capacity 15
 16 and its square, the sum of opponents' capacities and its interaction with own capacity, 16
 17 own bankruptcy state and its interaction with all of the above, the demand state and its 17
 18 interaction with all of the above, and an indicator for the implementation of BAPCPA and 18
 19 its interaction with all of the above. I also assume that I know the common, continuous rate 19
 20 of time preference, ρ . 20

22 4.2.4. *Constructing the Likelihood* 22

$$23 \quad \sum_{j \in J_a} \exp(X_k \beta_j) \quad 23$$

24 In order to write the likelihood of the data as a function of only the empirical CCPs and 24
 25 structural parameters requires the presence of either a terminal state or some sort of finite 25
 26 dependence. I use firm exit as a terminal state in order to take advantage of CCP methods. 26
 27 Suppose I observe every non-continuation choice $j > 0$ for each player, and that I observe 27
 28 all changes in market demand (high or low). I now derive the likelihood, using ABBE 28
 29 (2016) as a guide. What we observe is a series of events and their points in time. Let the state 29
 30 space be indexed by $k = \{1, \dots, K\}$, and let Q_0 be the $K \times K$ intensity matrix governing 30
 31 exogenous state transitions. Let Q_N be the intensity matrix governing agent-related state 31
 32 transitions. An intensity matrix characterizes a finite-state Markov jump process, in which 32

26

1 the elements of Q represent the rates at which the possible transitions occur. For example, 1
 2 if $K = 3$, we have intensity matrix 2

3

$$4 \quad \begin{matrix} q_{11} & q_{12} & q_{13} \\ 5 \quad Q = & q_{21} & q_{22} & q_{23} \\ 6 \quad & q_{31} & q_{32} & q_{33} \end{matrix} 4 \\ 5 \\ 6$$

7 For $l \neq k$, q_{kl} is the hazard rate for transitions from state k to state l , that is, 7

8

$$9 \quad q_{kl} = \lim_{h \rightarrow 0} \frac{\mathbb{P}[X_{t+h} = l | X_t = k]}{h} 9 \\ 10$$

11 For $l = k$, q_{kk} is the overall rate at which the process leaves state k and is defined as a 11
 12 negative number 12

$$13 \quad q_{kk} = - \sum_{l \neq k} q_{kl} 13 \\ 14$$

15 such that the sum across any given row is always zero. The intensity matrix tells us every- 15
 16 thing we need to know about the transition process. In particular, we know that the duration 16
 17 in state k has an exponential distribution with parameter $-q_{kk}$. That is, 17

18

$$19 \quad F_k(t) = 1 - \exp(-t \sum_{l \neq k} q_{kl}) 19 \\ 20$$

21 and 21

$$22 \quad f_k(t) = \left(\sum_{l \neq k} q_{kl} \right) \exp(-t \sum_{l \neq k} q_{kl}) 22 \\ 23 \\ 24$$

25 Conditional on a jump occurring, the probability of transitioning to state l from state k is 25
 26 $\frac{q_{kl}}{\sum_{l' \neq k} q_{kl'}}$. Therefore, the joint likelihood of a jump occurring at time τ from state k to state 26
 27 l is 27

$$28 \quad L_{k,l,\tau} = \left(\sum_{l \neq k} q_{kl} \right) \exp(-\tau \sum_{l \neq k} q_{kl}) \times \frac{q_{kl}}{\sum_{l' \neq k} q_{kl'}} 28 \\ 29 \\ 30 \\ 31 \quad = q_{kl} \exp(-\tau \sum_{l \neq k} q_{kl}) 31 \\ 32$$

1 Putting this back into the terms of the model, where Q_N governs players and Q_0 governs 1
 2 nature, we can write the likelihood separately for nature's moves and players' moves. Let 2
 3 choice $j = 0$ be a player's continuation choice, such that the state does not change. Then 3
 4 the likelihood that the next state change occurs after time τ and is the result of player i 4
 5 making capacity choice $j > 0$ is given by 5

$$6 \quad \lambda_a \sigma_{ijk} \exp \left[-\tau \left(\sum_{l \neq k} q_{kl}^0 + \sum_i \lambda_a \sum_{j \neq 0} \sigma_{aijk} + \sum_i \lambda_b \sum_{j \neq 0} \sigma_{bijk} \right) \right] 6$$

9 which can be written 9

$$11 \quad \lambda_a \sigma_{ijk} \exp \left[-\tau \left(\sum_{l \neq k} q_{kl}^0 + \sum_{r \in \{a,b\}} \lambda_r \sum_i (1 - \sigma_{ri0kt}) \right) \right] 11$$

14 Similarly, the likelihood that the next state change occurs after time τ and is the result of 14
 15 nature changing the state from k to l is 15

$$17 \quad q_{kl}^0 \exp \left[-\tau \left(\sum_{l \neq k} q_{kl}^0 + \sum_{r \in \{a,b\}} \lambda_r \sum_i (1 - \sigma_{ri0kt}) \right) \right] 17$$

20 Given data on T observations of a change in the state and associated length of time, τ , since 20
 21 the last state change, we construct the likelihood, $L(Q_0, \lambda_a, \lambda_b, \theta)$, of the data as follows: 21

$$23 \quad L(\cdot) = \prod_{t=1}^T \left\{ q_{kl}^0 \exp \left[-\tau_t \left(\sum_{l \neq k} q_{kl}^0 + \sum_{r \in \{a,b\}} \lambda_r \sum_i (1 - \sigma_{ri0kt}) \right) \right] \right\}^{d_t} 23$$

$$24 \quad \times \left\{ \lambda_b \sigma_{bijkt} \exp \left[-\tau_t \left(\sum_{l \neq k} q_{kl}^0 + \sum_{r \in \{a,b\}} \lambda_r \sum_i (1 - \sigma_{ri0kt}) \right) \right] \right\}^{(1-d_t)b_t} 24$$

$$26 \quad \times \left\{ \lambda_a \sigma_{aijkt} \exp \left[-\tau_t \left(\sum_{l \neq k} q_{kl}^0 + \sum_{r \in \{a,b\}} \lambda_r \sum_i (1 - \sigma_{ri0kt}) \right) \right] \right\}^{(1-d_t)(1-b_t)} 26$$

32 where d_t indicates a demand move, and b_t indicates a bankruptcy move. 32

1 Noting that $q_{kl}^0 = \gamma$ and taking logs, we can write the log-likelihood function as follows: 1

$$2 \quad l(\psi; \gamma, \lambda_a, \lambda_b, \rho, \hat{\sigma}, \hat{\beta}, \hat{\alpha}) = \sum_{t=1}^T \left\{ d_t \log(\gamma) \right. \\ 3 \quad + (1 - d_t) b_t \log(\lambda_b \tilde{\sigma}_{bjkt}) \\ 4 \quad + (1 - d_t) (1 - b_t) \log(\lambda_a \tilde{\sigma}_{ajkt}) \\ 5 \quad \left. - \tau_t \left(\gamma + \sum_{r \in \{a,b\}} \lambda_r \sum_i (1 - \tilde{\sigma}_{ri0kt}) \right) \right\} \\ 6 \\ 7 \\ 8 \\ 9$$

10 Maximizing the log-likelihood above yields estimates for the structural parameters. See 10
 11 [Blevins \(2016\)](#) for a discussion of identification. 11

12 **4.2.5. Flow Profit Estimation** 12

14 A key element of the state-specific value function is the flow profit, u_{ik} , in that state. 14
 15 Given the highly complex nature of network-level competition in the airline industry, I re- 15
 16 frain from explicitly modeling network choice.⁴⁶ Instead, I model flow profit in the domes- 16
 17 tic U.S. market as a reduced-form function of state variables such as the carrier's capacity, 17
 18 the aggregate capacity in the market, and consumer demand. One of the many advantages of 18
 19 analyzing the U.S. airline industry is the abundance of data, including quarterly line-item- 19
 20 level accounting data. I proxy for flow profits using a carrier's inflation-adjusted earnings 20
 21 before interest, taxes, depreciation, and amortization (EBITDA). To estimate flow profit as 21
 22 a function of the state, I regress the set of carrier-quarter EBITDA values on the associated 22
 23 time-weighted average values of each state variable for each carrier-quarter. Estimating 23
 24 flow profit in this way allows me to abstract away from modeling utilization or network 24
 25 effects. 25

26

27 **4.3. Counterfactual Equilibria** 27

28 Armed with structural parameter estimates, I can solve for equilibria under alternative 28
 29 assumptions and measure the corresponding industry statistics. The first counterfactual, 29
 30

31 ⁴⁶The interested reader will find a host of articles tackling that challenge, beginning with the basic entry model 31
 32 of [Berry \(1992\)](#) and stretching to more complex models such as [Aguirregabiria and Ho \(2010\)](#). 32

1 measuring the overall effect of BAPCPA on industry capacity, does not require me to re- 1
 2 solve. Instead, I simply forward simulate the choice probabilities estimated in the first stage, 2
 3 holding the bankruptcy regime fixed. My second counterfactual makes reorganization pro- 3
 4hibitively costly in order to examine just how much the Chapter 11 option influences in- 4
 5 dustry capacity levels. In this case, resolving for equilibrium is required, and this section 5
 6 explains how to do so. 6

7 For a given set of parameters θ , I can solve for a symmetric, anonymous Markov Perfect 7
 8 Equilibrium (MPE) using value function iteration. Existence of equilibrium is shown in 8
 9 ABBE (2016). The solution process can take some time, especially for large games, which 9
 10 is why full-solution estimation can be extremely time-consuming. CCP methods allow me 10
 11 to avoid solving for equilibrium during estimation, but doing so is necessary for simulating 11
 12 data from the model. 12

13 The number of possible states for each bankruptcy regime is $2(2Q)^N$, representing a 13
 14 severe curse of dimensionality. To make the state space more manageable, I take advantage 14
 15 of exchangeability (a.k.a. anonymity) to reduce the number of *payoff-relevant* states over 15
 16 which the value function must be computed. This approach results in a much smaller state 16
 17 space of size $S = 4Q \binom{2Q+N-2}{N-1}$.⁴⁷ The value function iteration program proceeds thusly: 17

- 18 1. Guess V , an $S \times 1$ vector 18
- 19 2. Compute firm 1's expected value of a move arrival 19
 - 20 (a) Compute the normalized choice-specific values (including adjustment costs) 20
 - 21 (b) Expected value of moving is the inclusive value term (the log-sum) 21
- 22 3. Compute conditional choice probabilities (CCPs) for other players 22
- 23 4. Compute firm 1's expected value of each opponent's move arrival⁴⁸ 23

24 24

25 25

26 26

27 27

28 28

29 ⁴⁷To understand how this helps, consider that a 7-player game with 5 capacity choices has 20 million basic 29
 30 states, but only 100,100 anonymous states. 30

31 ⁴⁸This is just the sum of the values (from firm 1's perspective) associated with each possible choice for each 31
 32 possible opponent, weighted by the corresponding CCP. 32

1 5. Update V according to the updating equation 1

$$2 \quad V_{i,k} = \frac{1}{\rho + N\lambda_a + N\lambda_b + \gamma} \left\{ u_{i,k} + \gamma V_{i,l(demand,k)} \right. \\ 3 \quad + \lambda_a \mathbb{E} [V_{i,l(i,k;a)}] + \lambda_b \mathbb{E} [V_{i,l(i,k;b)}] \\ 4 \quad \left. + \sum_{i' \neq i} \lambda_a \mathbb{E} [V_{i,l(i',k;a)}] + \sum_{i' \neq i} \lambda_b \mathbb{E} [V_{i,l(i',k;b)}] \right\} \\ 5 \quad \\ 6 \quad \\ 7 \quad$$

8 where i indexes the firm, k indexes the current state, and l indexes the future state. We
 9 repeat this process until V converges.⁴⁹ 8
 9 9

10 Before moving on, it may be instructive to describe the value function in asset pricing 10
 11 terms. Let us first re-write it this way 11

$$12 \quad \rho V_{i,k} = u_{i,k} + \gamma (V_{i,l(demand,k)} - V_{i,k}) \\ 13 \quad + \lambda_a (\mathbb{E} [V_{i,l(i,k;a)}] - V_{i,k}) + \lambda_b (\mathbb{E} [V_{i,l(i,k;b)}] - V_{i,k}) \\ 14 \quad + \sum_{i' \neq i} \lambda_a (\mathbb{E} [V_{i,l(i',k;a)}] - V_{i,k}) + \sum_{i' \neq i} \lambda_b (\mathbb{E} [V_{i,l(i',k;b)}] - V_{i,k}) \\ 15 \quad \\ 16 \quad$$

17 The formulation above indicates that the instantaneous opportunity cost of holding an asset 17
 18 (ρV), should be equal to the dividend flow received from that asset (u) plus the capital 18
 19 gain realized when a change in value occurs ($V' - V$), weighted by the chance of that gain 19
 20 being realized (λ_a, λ_b , or γ). We can simplify the value function expression by substituting 20
 21 the following: 21

$$22 \quad \\ 23 \quad \\ 24 \quad \mathbb{E} [V_{i,l(i,k;r)}] = \mathbb{E} \max_{j \in J_{i,k;r}} \{V_{i,l(i,j,k)} + \psi_{jk} + \epsilon_{ij}\} \\ 25 \quad$$

$$26 \quad \mathbb{E} [V_{i,l(i',k;r)}] = \sum_{j \in J_{i',k;r}} \sigma_{i',j,k} \mathbb{E} [V_{i,l(i',j,k)}] \\ 27 \quad$$

28 where $r \in \{a, b\}$ is the type of move opportunity, and $J_{i,k;r}$ is the corresponding choice 28
 29 set. Firms' strategies/CCPs are given in σ , and instantaneous payoffs (i.e. capacity adjust- 29
 30 30

31 ⁴⁹Convergence is not guaranteed for a multi-player game, but when estimating the model, opponents' CCPs are 31
 32 fixed, reducing the process to a single-player dynamic programming problem, which is guaranteed to converge. 32

1 ment costs and bankruptcy exit costs) are given in ψ_{jk} . The key benefit of continuous-time 1
 2 modeling is that only one event can occur at a time. Firms' state transitions are there- 2
 3 fore deterministic conditional upon their choices, such that $\mathbb{E} [V_{i,l(i',j,k)}] = V_{i,l(i',j,k)}$. Fi- 3
 4 nally, our assumption on the error structure allows us to write the inclusive value term, 4
 5 $\mathbb{E} \max_{j \in X_{i,k;r}} \{V_{i,l(i,j,k)} + \psi_{jk} + \epsilon_{ij}\}$, as 5

$$6 \quad \gamma_{eul} + \log \sum_{j \in J_{i,k;r}} \exp(V_{i,l(i,j,k)} + \psi_{jk}) \quad 6$$

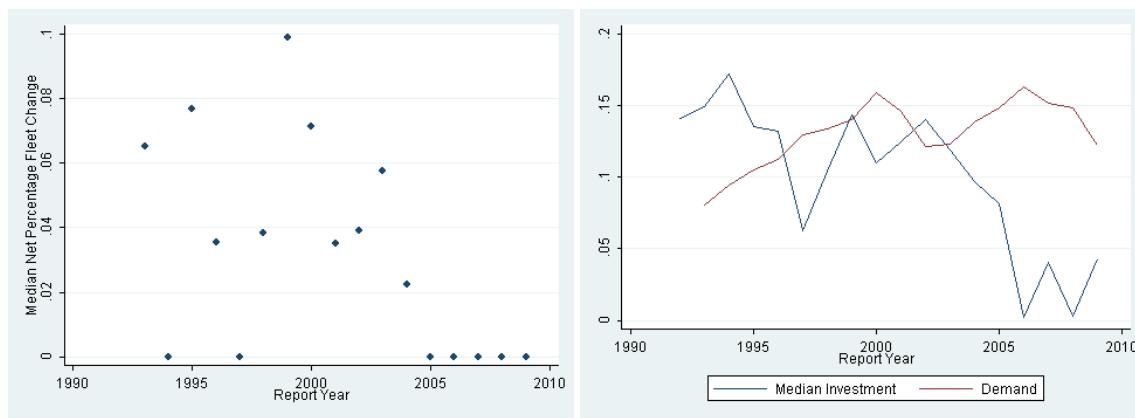
7 where γ_{eul} is Euler's constant. 7

10 5. DATA 10

11 I employ three data sets, which together allow me to match capacity and bankruptcy 11
 12 decisions with firm profitability over time. The first is the Ascend Online Fleets database, 12
 13 originally maintained by Flightglobal (now Cirium), which is part of the LexisNexis Risk 13
 14 Solutions Group.⁵⁰ The data base contains ownership and technical data on over 200,000 14
 15 aircraft worldwide. I aggregate Cirium's daily aircraft-level data to measure airlines' fleet 15
 16 size. The second data set includes the timing and outcome of all bankruptcy filings in the 16
 17 U.S. airline industry. The third is a set of publicly available databases maintained by the 17
 18 U.S. Department of Transportation (DOT). Data on quantities and prices for commercial 18
 19 passenger air travel come primarily from the Airline Origin & Destination Survey, known 19
 20 as Data Bank 1B (DB1B).⁵¹ I supplement the DB1B data with the Form 41 Traffic database 20
 21 (T100) and the Form 41 Financial database. Below I describe each data set in further detail. 21
 22

23 5.1. Daily Fleet Data 23

24 Capacity is defined as the number of seats in a carrier's aircraft fleet, grouped into a 24
 25 number of bins. Daily fleet data comes from the Ascend Online Fleets data base, which 25
 26 works well with a continuous-time modeling approach because it provides a daily snapshot 26
 27


28 _____ 28
 29 ⁵⁰I am grateful to the Duke Economics Department and Andrew Sweeting for purchasing this data. More details 29
 can be found at the company's Website: <https://www.cirium.com/>

30 ⁵¹A wealth of air traffic information is publicly available for download from the Bureau of Transportation 30
 31 Statistics (<http://www.transtats.bts.gov/>). The DB1B data since 1993 are freely available here, and earlier years 31
 32 are available for purchase in hard copy. 32

1 of aircraft ownership and usage. Each observation covers all passenger aircraft operated 1
 2 in North America, including their registration and serial numbers, owners and operators 2
 3 (indicating leased vs. owned), aircraft and engine types and manufacturers, and status (in 3
 4 storage, on order, in service, etc.), among other details. I aggregate this data into daily fleet 4
 5 snapshots for all domestic passenger air carriers. Fluctuations in operating fleet serve as 5
 6 the key indicator of capacity investment. However, I must account for the fact that many 6
 7 aircraft are purchased years ahead of time. The fleet database provides each aircraft's build 7
 8 year, order date, and delivery date, so I know when each aircraft was ordered, at least for 8
 9 brand new planes. Another concern is that the aircraft fleet is not partitioned into regional 9
 10 subcategories, posing a challenge when analyzing domestic data only. To address this con- 10
 11 cern I restrict my analysis to narrow-body jets, since wide-body jets are more often used 11
 12 to fly over-ocean routes. Another key piece of data is the financier, if present, for each air- 12
 13 craft, which allows me to measure how many parties (either lessors or secured creditors) 13
 14 with which a given carrier is contracted. Figure 3 demonstrates that fleet investment has 14
 15 fallen since BAPCPA was enacted (panel a), while demand for passenger air travel fails to 15
 16 explain the trend (panel b). Table I summarizes daily aircraft fleets for several large carriers. 16

17
 18
 19

20 FIGURE 3.—Fleet Investment and Demand over Time
 21 (a) Median Change in Fleet Size (b) Median Investment and Implied Demand

30
 31
 32

TABLE I
SELECTED CAPACITY STATISTICS
(*in thousands of seats*)

Player	Mean	Median	Min	Max
American (AA)	99.8	105.4	23.8	186.1
Continental (CO)	46.8	47.1	5.0	77.6
Delta (DL)	87.5	92.0	32.5	160.8
Northwest (NW)	61.0	69.5	20.9	97.2
United (UA)	85.0	88.2	28.9	188.3
US Airways (US)	46.3	52.3	8.0	87.0
Southwest (WN)	45.9	42.7	2.1	124.2
America West (HP)	59.7	36.8	0.1	141.5
Overall	66.8	66.4	0.1	188.3
Observations			98,448	carrier-days

5.2. *Bankruptcy Events*

18 Evaluating firms' decisions to enter and exit bankruptcy requires data on the timing
19 and circumstances of these decisions. I extend and cross-check [Ciliberto and Schenone](#)
20 (2012)'s list of pre-2008 bankruptcies using news and trade journal reports, court dockets,
21 Lynn LoPucki's Florida-UCLA Bankruptcy Research Database, and data from Airlines
22 for America (A4A), the U.S. airline industry's primary trade organization. While nearly
23 200 airline cases have been filed since 1978, many of those involved small and/or cargo
24 carriers. I focus on the filings of passenger airlines with at least 20 aircraft who provide
25 service on their own routes, as opposed to regional carriers who primarily operate as feeder
26 airlines to larger companies. After imposing those restrictions and combining mutually
27 owned companies, I end up with 41 bankruptcy filings matched to capacity data.⁵²

52If that figure seems a bit small, recall that the model is not just estimated off of transitions between states.
53Every daily observation of a firm's bankruptcy state provides information on the hazard of state transition, so
54knowing that American Airlines was bankrupt on January 1, 2013 is just as important as knowing that the firm
55was not bankrupt on March 3, 2005.

5.3. Demand and Flow Profit

Airline demand is typically estimated using publicly available price and quantity data. I used quarterly data from the DOT to construct such a measure and found that it was no better at predicting profit or investment than a measure of real GDP growth. Moreover, using real GDP allows me to credibly treat my demand measure as exogenous, while also sidestepping the need to account for demand estimation error when reporting final results. Therefore, I proxy for industry demand using year-over-year quarterly growth in real GDP. I define the demand state as good if growth was above the linear trend, and bad otherwise. This definition amounts to about 20 demand changes over the course of my data, consistent in both number and direction with results from estimating demand with price and quantity data.

The DOT's Form 41 Financial Data, Schedule P-1.2 provides an abundant source of financial information, including operating revenue and categorized expense data for reporting carriers in the U.S. Moreover, each accounting category is broken down by region, allowing me to link domestic operating profits to domestic demand. In order to convert accounting data into economic profits, I assume that operating cash flow (as measured by EBITDA) is proportional to economic profit. Table [II](#) summarizes this value for several large carriers.

6. RESULTS AND CONCLUSIONS

I now present the results of each empirical analysis. My difference-in-differences test shows that an increase in bankruptcy cost tends to discipline capital investment. My structural estimation points to a very large downward capacity adjustment cost outside of bankruptcy and suggests that BAPCPA roughly doubled the all-in cost of Chapter 11. My counterfactual simulations demonstrate that rescinding BAPCPA would increase industry capacity by about 5%, while completely eliminating the reorganization option would reduce industry capacity levels by as much as 20%.

6.1. Difference-in-Differences Results

The changes made by BAPCPA were more likely to affect the behavior of the most complex firms, for which Chapter 11 typically represents a multi-year process. Following

TABLE II
SELECTED PROFIT STATISTICS
(*in millions of \$2009*)

Player	Mean	Median	Min	Max
American (AA)	1274	1551	-4509	4267
Continental (CO)	548	538	-1467	2104
Delta (DL)	1486	1169	-1475	6111
Northwest (NW)	801	879	-1348	3132
United (UA)	1019	1186	-4307	4638
US Airways (US)	255	255	-3646	2349
Southwest (WN)	1000	960	62	2253
America West (HP)	377	393	-2499	1529
Overall	846	737	-4509	6111
Observations			696	carrier-quarters

the empirical literature on bankruptcy, I proxy for complexity using firm size. I measure firm size as the average number of seats available in the fleet during the quarter, and I split the sample in half by size as of the fourth quarter of 2004, using 5,000 seats as the cutoff. Investment is the percent change in fleet size from the same quarter of the previous year. Table III shows that BAPCPA reduced overall investment of sufficiently large firms by about 14% relative to small airlines.

6.2. Structural Model Estimates

Table IV illustrates that BAPCPA more than doubled the cost of emerging from Chapter 11, raising it from \$799 million to \$1.7 billion. Upward adjustment costs are estimated to be around \$170 million outside of bankruptcy and \$631 under bankruptcy protection. Downward adjustment costs are about \$1 billion outside of bankruptcy and \$145 million under bankruptcy protection. However, it should be noted that other than the downward adjustment cost outside of bankruptcy, capacity adjustment costs are not tightly estimated. To put these figures in context, note that the median annualized cash flow across carriers is about \$700 million. Note also that adjustment costs in my model are based on a change

1 TABLE III
 2 DIFFERENCE-IN-DIFFERENCES RESULTS
 3 *Dependent Variable = Year-over-Year % Change in Fleet Size*

4	Large	0.068	4
5		(0.039)	5
6	Post BAPCPA	0.108	6
7		(0.051)	7
8	Large X Post BAPCPA	-0.135	8
9		(0.046)	9
10	Moving Average of Demand Growth	0.141	10
		(0.086)	
11	Seasonal Fixed Effects	Yes	11
12	Type-Specific Fixed Effects (LEG, LCC, Other)	Yes	12
13	Type-Specific Linear Time Trend	Yes	13
14			14
15	Number of Observations	1,982	15
16			16
17			17

18 Note: Standard errors clustered at firm level and reported in
 19 parentheses below estimates.

20
 21 of between 20 and 40 aircraft. Given a rough estimate⁵³ of \$10 million per aircraft for
 22 early lease termination fees, adjustment costs in the hundreds of millions appear sensible,
 23 especially for downward adjustments outside of bankruptcy.

24
 25 *6.3. Counterfactual Simulations*

26 Using the structural model estimates, I solve for two counterfactual equilibria. In the first,
 27 I simulate what would have happened had BAPCPA never been passed. In that scenario,
 28 I find a modest increase in industry capacity of about 5%, representing an estimate of the
 29 contribution of BAPCPA to observed capacity discipline. Though small in magnitude, the
 30 presence of any effect at all should give pause to bankruptcy law reformers. In his 2013
 31

32 ⁵³per AMR Corporation's 2010 10-K

TABLE IV
STRUCTURAL PARAMETER ESTIMATES
(*costs in millions of \$2009*)

4	Baseline Bankruptcy Emergence Cost	799	4
5		(345)	5
6	BAPCPA Incremental Bankruptcy Emergence Cost	906	6
7		(330)	7
8	Upward Adjustment Cost, Non-Bankruptcy	170	8
9		(260)	9
10	Downward Adjustment Cost, Non-Bankruptcy	1061	10
11		(285)	11
12	Upward Adjustment Cost, Bankruptcy	631	12
13		(305)	13
14	Downward Adjustment Cost, Bankruptcy	145	14
15		(523)	15
16	Scale Parameter	0.47	16
17		(2.6)	17
18	Number of Observed Events	1184	18

Note: Bootstrapped standard errors in parentheses below estimates.

21 testimony before the American Bankruptcy Institute's Commission to Study the Reform 21
22 of Chapter 11, bankruptcy expert and law professor Daniel Keating stressed policymakers 22
23 to respect the potential for unintended consequences from tweaking the U.S. Bankruptcy 23
24 Code.⁵⁴ As Congress considers future reforms to bankruptcy law, the influence of Chapter 24
25 11's non-financial provisions on investment behavior should be considered. 25

26 The second counterfactual simulates industry evolution through 2014, the final year of 26
27 my capacity sample, as though the expected cost of Chapter 11 is infinite, effectively pre- 27
28 cluding reorganization as a downsizing option. I find that eliminating the Chapter 11 option 28
29 reduces overall capacity by as much as 20% relative to its actual level, suggesting that the 29

1 malleability of contracts in bankruptcy has a significant inflationary effect on capacity. 1
 2 Given the steep adjustment cost associated with downsizing outside of bankruptcy, this 2
 3 result is not entirely surprising. That is, by reducing the level of commitment otherwise 3
 4 engendered by long-run contracts in the industry, the Chapter 11 option leads to greater 4
 5 equilibrium capacity. 5

6 6

7 6.4. Conclusion 7

8 The key takeaway of this paper is that bankruptcy law, specifically the provisions of 8
 9 Chapter 11, can influence oligopoly investment behavior. Moreover, this effect is distinct 9
 10 from the limited liability and strategic bankruptcy effects of [Brander and Lewis \(1986, 10](#)
 11 [1988\)](#) and any capital-structure-related investment effects. I have developed a realistic, 11
 12 dynamic model that predicts capacity discipline as an outcome of stricter bankruptcy policy, 12
 13 and I have provided support for that prediction with rigorous, multifaceted empirical anal- 13
 14 ysis and counterfactual simulation. 14

15 As the first paper to link the investment and reorganization decisions in a strategic setting, 15
 16 this work has a number of interesting extensions. Understanding how the airline industry 16
 17 has responded to bankruptcy reform is valuable in its own right, yet the framework used 17
 18 herein applies to any industry with heavily contractual investment and volatile demand. 18
 19 Steel, auto manufacturing, telecommunications, and even retail conform to this pattern. 19
 20 The capacity discipline engendered by a more creditor-friendly Chapter 11 should correlate 20
 21 positively with an industry's demand volatility and prevalence of long-term contracts. The 21
 22 degree to which this relationship applies beyond the airline industry is an open question, 22
 23 and one that would seem highly relevant for the study of industry dynamics, both within 23
 24 each relevant industry and in the broader macroeconomy. 24

25 From a policy perspective, this work and its extensions have important implications for 25
 26 bankruptcy lawmakers around the world. In the United States, bankruptcy reform is an 26
 27 area of active interest and policy discussion.⁵⁵ Understanding how BAPCPA has influenced 27
 28

29 ⁵⁵For example, from 2011 to 2014, the American Bankruptcy Institute's Commission to Study the Reform 29
 30 of Chapter 11 heard testimony from legal experts in a variety of fields regarding whether and how the current 30
 31 U.S. Bankruptcy Code should be amended. Since that time, a number of legislative proposals addressing various 31
 32 aspects of insolvency policy have been brought forth in both houses of Congress, including the Small Business 32

1 equilibrium investment in capital should inform future legislative actions, especially those 1
2 affecting large companies. Looking beyond the U.S., [Halliday and Carruthers \(2007\)](#), in 2
3 their study of the globalization of corporate insolvency regimes, document a convergence 3
4 in bankruptcy law over the previous two decades. The authors explain how international 4
5 institutions, with significant U.S. support, have forged global norms, consequently influ- 5
6 encing the lawmaking processes of transitional and developing countries. To the extent that 6
7 U.S. practitioners and policymakers continue to contribute to global norm making, they 7
8 must recognize how those norms may impact firm behavior, especially given the crucial 8
9 role of capital investment for economic growth in developing economies. 9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31 Reorganization Act of 2019, which made Chapter 11 considerably more feasible as a tool for small businesses in 31
32 financial distress, as well as a number of reforms to consumer bankruptcy. 32

1	REFERENCES	1
2	ABEL, ANDREW B AND JANICE C EBERLY (1996): "Optimal investment with costly reversibility," <i>The Review</i>	2
3	of <i>Economic Studies</i> , 63 (4), 581–593. [2]	3
4	ADLER, BARRY E (1995): "A re-examination of near-bankruptcy investment incentives," <i>The University of</i>	4
5	<i>Chicago Law Review</i> , 62 (2), 575–606. [9]	5
6	AGUIREGABIRIA, VICTOR AND CHUN-YU HO (2010): "A dynamic game of airline network competition: Hub-	6
7	and-spoke networks and entry deterrence," <i>International Journal of Industrial Organization</i> , 28 (4), 377–382.	7
8	[6, 28]	8
9	——— (2012): "A dynamic oligopoly game of the US airline industry: Estimation and policy experiments,"	9
10	<i>Journal of Econometrics</i> , 168 (1), 156–173. [19]	10
11	AGUIREGABIRIA, VICTOR AND PEDRO MIRA (2007): "Sequential estimation of dynamic discrete games,"	11
12	<i>Econometrica</i> , 75 (1), 1–53. [20]	12
13	ALTMAN, EDWARD I AND EDITH HOTCHKISS (2010): <i>Corporate financial distress and bankruptcy: Predict and</i>	13
14	<i>avoid bankruptcy, analyze and invest in distressed debt</i> , vol. 289, John Wiley & Sons. [3, 15]	14
15	ANTILL, SAMUEL AND STEVEN R GRENADIER (2019): "Optimal capital structure and bankruptcy choice: Dy-	15
16	dynamic bargaining versus liquidation," <i>Journal of Financial Economics</i> , 133 (1), 198–224. [8, 9]	16
17	ARCIDIACONO, PETER, PATRICK BAYER, JASON R BLEVINS, AND PAUL B ELLICKSON (2016): "Estimation	17
18	of dynamic discrete choice models in continuous time with an application to retail competition," <i>The Review of</i>	18
19	<i>Economic Studies</i> , 83 (3), 889–931. [20]	19
20	ARROW, K.J. (1968): "Optimal Capital Policy with Irreversible Investment," in <i>Value, Capital and Growth</i> , ed.	20
21	by J.R. Hicks and J.N. Wolfe, Edinburgh University Press. [2, 5]	21
22	AYOTTE, KENNETH M AND EDWARD R MORRISON (2009): "Creditor control and conflict in Chapter 11,"	22
23	<i>Journal of Legal Analysis</i> , 1 (2), 511–551. [3, 15]	23
24	BAJARI, PATRICK, C LANIER BENKARD, AND JONATHAN LEVIN (2007): "Estimating dynamic models of im-	24
25	perfect competition," <i>Econometrica</i> , 75 (5), 1331–1370. [20]	25
26	BAK, THOMAS, JOHN GOLMANT, AND JAMES WOODS (2008): "Comparison of the Effects of the 1978 and	26
27	2005 Bankruptcy Reform Legislation on Bankruptcy Filing Rates, A," <i>Emory Bankr. Dev. J.</i> , 25, 11. [14]	27
28	BEBCHUK, LUCIAN ARYE (2002): "Ex ante costs of violating absolute priority in bankruptcy," <i>The Journal of</i>	28
29	<i>Finance</i> , 57 (1), 445–460. [10]	29
30	BEBCHUK, LUCIAN AYRE AND HOWARD F CHANG (1992): "Bargaining and the division of value in corporate	30
31	reorganization," <i>The Journal of Law, Economics, and Organization</i> , 8 (2), 253–279. [9]	31
32	BENKARD, C LANIER, PRZEMYSŁAW JEZIORSKI, AND GABRIEL Y WEINTRAUB (2015): "Oblivious equilib-	32
33	rium for concentrated industries," <i>The RAND Journal of Economics</i> , 46 (4), 671–708. [20]	33
34	BENMELECH, EFRAIM AND NITTAI K BERGMAN (2008): "Liquidation Values and the Credibility of Financial	34
35	Contract Renegotiation: Evidence from US Airlines," <i>The Quarterly Journal of Economics</i> , 123 (4), 1635–1677.	35
36	[17]	36
37	BERRY, STEVEN T (1992): "Estimation of a Model of Entry in the Airline Industry," <i>Econometrica</i> , 889–917.	37
38	[28]	38

1 BERTOLA, GIUSEPPE AND RICARDO J CABALLERO (1994): "Irreversibility and aggregate investment," *The* 1
 2 *Review of Economic Studies*, 61 (2), 223–246. [2] 2

3 BESANKO, DAVID AND ULRICH DORASZELSKI (2004): "Capacity dynamics and endogenous asymmetries in 3
 4 firm size," *RAND Journal of Economics*, 23–49. [2] 4

5 BESANKO, DAVID, ULRICH DORASZELSKI, LAUREN XIAOYUAN LU, AND MARK SATTERTHWAITE (2010): 5
 6 "Lumpy capacity investment and disinvestment dynamics," *Operations Research*, 58 (4-part-2), 1178–1193. [2, 6] 6

7 BHANDARI, JAGDEEP S AND LAWRENCE A WEISS (1993): "Increasing Bankruptcy Filing Rate: An Historical 7
 8 Analysis, The," *Am. Bankr. LJ*, 67, 1. [15] 8

9 BLEVINS, JASON R (2016): "Identification and estimation of continuous time dynamic discrete choice games," 9
 Tech. rep., Working paper, Ohio State University. [28]

10 BLOOM, NICK, STEPHEN BOND, AND JOHN VAN REENEN (2007): "Uncertainty and investment dynamics," 10
 11 *The review of economic studies*, 74 (2), 391–415. [2] 11

12 BORENSTEIN, SEVERIN AND NANCY L ROSE (1995): "Bankruptcy and pricing behavior in US airline markets," 12
 13 *The American Economic Review*, 85 (2), 397–402. [7] 13

14 ——— (2003): "The impact of bankruptcy on airline service levels," *American Economic Review*, 93 (2), 415– 14
 419. [7] 14

15 ——— (2013): "How Airline Markets Work... or Do They? Regulatory Reform in the Airline Industry," in 15
 16 *Economic Regulation and Its Reform: What Have We Learned?*, University of Chicago Press, 63–135. [17] 16

17 BOYES, WILLIAM J AND ROGER L FAITH (1986): "Some effects of the bankruptcy reform act of 1978," *JL &* 17
 18 *Econ.*, 29, 139. [15] 18

19 BRANCH, BEN S, HUGH M RAY, AND ROBIN RUSSELL (2007): "Last rights: liquidating a company," *OUP* 19
 Catalogue. [12]

20 BRANDER, JAMES A AND TRACY R LEWIS (1986): "Oligopoly and financial structure: The limited liability 20
 21 effect," *The American Economic Review*, 956–970. [7, 8, 38] 21

22 ——— (1988): "Bankruptcy costs and the theory of oligopoly," *Canadian journal of economics*, 221–243. [2, 7, 22
 23 8, 38] 23

24 BRANDER, JAMES A AND BARBARA J SPENCER (1983): "Strategic commitment with R&D: the symmetric 24
 case," *The Bell Journal of Economics*, 225–235. [8]

25 BROADIE, MARK, MIKHAIL CHERNOV, AND SURESH SUNDARESAN (2007): "Optimal debt and equity values 25
 26 in the presence of Chapter 7 and Chapter 11," *The journal of Finance*, 62 (3), 1341–1377. [8] 26

27 BULOW, JEREMY I AND JOHN B SHOVEN (1978): "The bankruptcy decision," *The Bell Journal of Economics*, 27
 28 437–456. [8] 28

29 BUSSE, MEGHAN (2002): "Firm financial condition and airline price wars," *RAND Journal of Economics*, 298– 29
 318. [7] 30

30 CILIBERTO, FEDERICO AND CAROLA SCHENONE (2012): "Bankruptcy and product-market competition: Evi- 30
 31 dence from the airline industry," *International Journal of Industrial Organization*, 30 (6), 564–577. [7, 17, 18, 31
 33] 32

1 COELHO, LUIS (2010): “Bankruptcy Abuse Prevention and Consumer Protection Act: Friend or Foe?” *University* 1
 2 *of the Algarve Working Paper*. [3, 15] 2

3 COOLEY, THOMAS F AND VINCENZO QUADRINI (2001): “Financial markets and firm dynamics,” *American* 3
 4 *economic review*, 91 (5), 1286–1310. [2] 4

5 CORBAE, DEAN AND PABLO D’ERASMO (2021): “Reorganization or liquidation: Bankruptcy choice and firm 5
 dynamics,” *The Review of Economic Studies*, 88 (5), 2239–2274. [8, 9] 5

6 CORRIDORE, JIM (2005): “Airlines,” *Standard and Poor’s Industry Surveys*. [18] 6

7 DELANEY, KEVIN J (1992): *Strategic bankruptcy: How corporations and creditors use chapter 11 to their ad-* 7
 8 *vantage*, Univ of California Press. [17] 8

9 DIXIT, AVINASH (1980): “The role of investment in entry-deterrance,” *The economic journal*, 90 (357), 95–106. 9
 [8] 9

10 DOMOWITZ, IAN AND THOMAS L EOVALDI (1993): “The impact of the Bankruptcy Reform Act of 1978 on 10
 consumer bankruptcy,” *The Journal of Law and Economics*, 36 (2), 803–835. [15] 11

11 EATON, B CURTIS AND RICHARD G LIPSEY (1979): “The theory of market pre-emption: the persistence of 12
 excess capacity and monopoly in growing spatial markets,” *Economica*, 149–158. [6] 12

12 ——— (1980): “Exit barriers are entry barriers: The durability of capital as a barrier to entry,” *The Bell Journal* 13
 13 *of Economics*, 721–729. [8] 14

14 ERASLAN, HÜLYA KK (2008): “Corporate bankruptcy reorganizations: estimates from a bargaining model,” 15
 15 *International Economic Review*, 49 (2), 659–681. [9] 16

16 ERICSON, RICHARD AND ARIEL PAKES (1995): “Markov-perfect industry dynamics: A framework for empirical 17
 17 work,” *The Review of Economic Studies*, 62 (1), 53–82. [2, 19] 18

18 FLYNN, DAVID M AND MAMDOUH FARID (1991): “The intentional use of Chapter XI: Lingering versus imme- 19
 19 diate filing,” *Strategic Management Journal*, 12 (1), 63–74. [18] 19

20 GERTNER, ROBERT AND DAVID SCHARFSTEIN (1991): “A theory of workouts and the effects of reorganization 20
 law,” *The Journal of Finance*, 46 (4), 1189–1222. [9] 21

21 GILSON, STUART C (2010): *Creating value through corporate restructuring: Case studies in bankruptcies, buy-* 22
 22 *outs, and breakups* (2nd ed.), vol. 544, John Wiley & Sons. [3, 15] 23

23 GILSON, STUART C, KOSE JOHN, AND LARRY HP LANG (1990): “Troubled debt restructurings: An empirical 24
 24 study of private reorganization of firms in default,” *Journal of financial economics*, 27 (2), 315–353. [11] 24

25 GOTTLIEB, L, M KLEIN, AND R SUSSMAN (2009): “BAPCPAs effects on retail Chapter 11s are profound,” 25
 26 *Journal of Corporate Renewal*, February 19. [3, 15] 26

27 GROSS, TAL, RAYMOND KLUENDER, FENG LIU, MATTHEW J NOTOWIDIGDO, AND JIALAN WANG (2021): 27
 28 “The economic consequences of bankruptcy reform,” *American Economic Review*, 111 (7), 2309–2341. [15] 28

29 HALLIDAY, TERENCE C AND BRUCE G CARRUTHERS (2007): “The recursivity of law: Global norm making 29
 and national lawmaking in the globalization of corporate insolvency regimes,” *American Journal of Sociology*, 30
 112 (4), 1135–1202. [39] 30

31 HAMOTO, AZAD AND RICARDO CORREIA (2012): “A theoretical analysis of the stages and events experienced 31
 32 by financially distressed firms,” . [8] 32

1 HENDRICKS, KEN, MICHELE PICCIONE, AND GUOFU TAN (1997): “Entry and exit in hub-spoke networks,” 1
 2 *The RAND Journal of Economics*, 291–303. [6] 2

3 HERMAN, IRA L (2007): “Statutory Schizophrenia and the New Chapter 11,” *AM. BANKR. INST. J.*(Dec. 3
 2006/Jan. 2007). [3, 15] 3

4 HOTZ, V JOSEPH AND ROBERT A MILLER (1993): “Conditional choice probabilities and the estimation of 4
 5 dynamic models,” *The Review of Economic Studies*, 60 (3), 497–529. [20] 5

6 HOTZ, V JOSEPH, ROBERT A MILLER, SETH SANDERS, AND JEFFREY SMITH (1994): “A simulation estimator 6
 7 for dynamic models of discrete choice,” *The Review of Economic Studies*, 61 (2), 265–289. [20] 7

8 IVERSON, BENJAMIN (2018): “Get in line: Chapter 11 restructuring in crowded bankruptcy courts,” *Management 8
 Science*, 64 (11), 5370–5394. [3, 13, 15, 17] 9

9 JACKSON, THOMAS H. (1984): *The Logic and Limits of Bankruptcy Law*, Harvard University Press. [9, 10] 9

10 JAYANTI, RAMA K AND SRIHARSHA V JAYANTI (2011): “Effects of airline bankruptcies: an event study,” *Journal 10
 11 of Services Marketing*, 25 (6), 399–409. [7] 11

12 JOU, JYH-BANG AND TAN LEE (2008): “Irreversible investment, financing, and bankruptcy decisions in an 12
 13 oligopoly,” *Journal of Financial and Quantitative Analysis*, 43 (3), 769–786. [5] 13

14 LELAND, HAYNE E (1994): “Corporate debt value, bond covenants, and optimal capital structure,” *The journal 14
 15 of finance*, 49 (4), 1213–1252. [8] 14

15 LELAND, HAYNE E AND KLAUS BJERRE TOFT (1996): “Optimal capital structure, endogenous bankruptcy, and 15
 16 the term structure of credit spreads,” *The journal of finance*, 51 (3), 987–1019. [8] 16

17 LEVIN, R (2005): “Redline of Titles 11, 28, and 18, United States Code, from current law (as of January 1, 2005) 17
 18 as enacted by The Bankruptcy Abuse Prevention and Consumer Protection Act of 2005 Pub. L. 109-8, 119 Stat. 18
 19 23, enacted April 20, 2005 (Does not include amendments to other laws),” *Skadden, Arps, Slate, Meagher & 19
 Flom LLP*. [15] 19

20 LI, BIN, QIHE TANG, LIHE WANG, AND XIAOWEN ZHOU (2014): “Liquidation risk in the presence of Chapters 20
 21 7 and 11 of the US bankruptcy code,” *Journal of Financial Engineering*, 1 (03), 1450023. [8] 21

22 LI, SOPHIA, JOE MAZUR, YONGJOON PARK, JAMES ROBERTS, ANDREW SWEETING, AND JUN ZHANG 22
 23 (2022): “Repositioning and market power after airline mergers,” *The RAND Journal of Economics*, 53 (1), 23
 166–199. [6] 24

24 LOPUCKI, LYNN M. (2017): “Florida-UCLA-LoPucki Bankruptcy Research Database,” . [2] 24

25 MATSA, DAVID A (2010): “Capital structure as a strategic variable: Evidence from collective bargaining,” *The 25
 26 Journal of Finance*, 65 (3), 1197–1232. [8] 26

27 MAYNARD, MICHELINE (2005): “Bankruptcy for 2: Storm Broke the Camel’s Back,” *New York Times*. [18] 27

28 MECKLING, WILLIAM H AND MICHAEL C JENSEN (1976): “Theory of the firm: Managerial behavior, agency 28
 29 costs and ownership structure,” *Journal of financial economics*, 3 (4), 305–360. [8] 29

30 MODIGLIANI, FRANCO AND MERTON H. MILLER (1958): “The Cost of Capital, Corporation Finance and the 30
 Theory of Investment,” *The American Economic Review*, 48 (3), pp. 261–297. [8] 30

31 MORRISON, EDWARD R (2007): “Bankruptcy decision making: an empirical study of continuation bias in small- 31
 32 business bankruptcies,” *The Journal of Law and Economics*, 50 (2), 381–419. [13] 32

1 MOULTON, WILBUR N AND HOWARD THOMAS (1993): “Bankruptcy as a deliberate strategy: Theoretical con- 1
2 siderations and empirical evidence,” *Strategic Management Journal*, 14 (2), 125–135. [18] 2

3 MYERS, STEWART C (1977): “Determinants of corporate borrowing,” *Journal of financial economics*, 5 (2), 3
4 147–175. [8] 4

5 NELSON, JON P (2000): “Consumer bankruptcies and the Bankruptcy Reform Act: a time-series intervention 5
6 analysis, 1960–1997,” *Journal of Financial Services Research*, 17 (2), 181–200. [15] 5

7 NISHIHARA, MICHIA AND TAKASHI SHIBATA (2016): “Asset sale, debt restructuring, and liquidation,” *Journal 6
8 of Economic Dynamics and Control*, 67, 73–92. [8] 7

9 PAKES, ARIEL, MICHAEL OSTROVSKY, AND STEVEN BERRY (2007): “Simple estimators for the parameters of 8
10 discrete dynamic games (with entry/exit examples),” *The RAND Journal of Economics*, 38 (2), 373–399. [20] 9

11 PINDYCK, ROBERT S (1986): “Irreversible investment, capacity choice, and the value of the firm,” *American 10
12 Economic Review*, 78 (5). [5] 11

13 PORTER, MICHAEL E. (1980): *Competitive Strategy: Techniques for Analyzing Industries and Competitors*, New 12
14 York: Free Press. [2, 5] 12

15 RASMUSSEN, ROBERT K (1994): “The ex ante effects of Bankruptcy reform on investment incentives,” *Wash. 13
16 ULQ*, 72, 1159. [10] 14

17 RÖLLER, LARS-HENDRIK AND ROBIN C SICKLES (2000): “Capacity and product market competition: measur- 15
18 ing market power in a puppy-dog’industry,” *International Journal of Industrial Organization*, 18 (6), 845–865. 16
[6] 16

19 ROSE-ACKERMAN, SUSAN (1991): “Risk taking and ruin: Bankruptcy and investment choice,” *The Journal of 17
20 Legal Studies*, 20 (2), 277–310. [10] 18

21 RYAN, STEPHEN P (2012): “The costs of environmental regulation in a concentrated industry,” *Econometrica*, 80 19
22 (3), 1019–1061. [20] 20

23 SCHELLING, THOMAS (1960): *The Strategy of Conflict*, Harvard University Press. [2] 21

24 SCHWARTZ, ALAN (1994): “The Absolute Priority Rule and the Firm’s Investment Policy,” *Wash. ULQ*, 72, 1213. 22
[9] 22

25 SELBST, STEPHEN B (2008): “BAPCPA Turns Three,” *Com. Lending Rev.*, 23, 9. [3, 15, 16] 23

26 SNIDER, CONNAN (2009): “Predatory incentives and predation policy: the American Airlines case,” *University 24
27 of Minnesota Working Paper*. [6] 25

28 SPENCE, A. MICHAEL (1979): “Investment Strategy and Growth in a New Market,” *Bell Journal of Economics*, 26
29 10 (1), 1–19. [5] 27

30 SPRAYREGEN, J, R CIERI, AND R WYNNE (2005): “Alert: Bankruptcy Abuse and Consumer Protection Act of 28
31 2005,” *Kirkland & Ellis LLP*. [3, 15] 29

32 SUNDARESAN, SURESH AND NENG WANG (2007): “Investment under uncertainty with strategic debt service,” 30
33 *American Economic Review*, 97 (2), 256–261. [8] 31

34 SUO, WULIN, WEI WANG, AND AMBER QI ZHANG (2013): “Explaining Debt Recovery Using an Endogenous 32
35 Bankruptcy Model,” *The Journal of Fixed Income*, 23 (2), 114–131. [8] 32

1	TAKAHASHI, YUYA (2015): "Estimating a war of attrition: The case of the us movie theater industry," <i>American Economic Review</i> , 105 (7), 2204–2241. [6]	1
2		2
3	TAVAKOLIAN, HAMID (1995): "Bankruptcy: an emerging corporate strategy," <i>SAM Advanced Management Journal</i> , 60, 18–18. [18]	3
4		4
5	WEINTRAUB, GABRIEL Y, C LANIER BENKARD, PRZEMYSŁAW JEZIORSKI, AND BENJAMIN VAN ROY (2010): "Nonstationary oblivious equilibrium," Tech. rep., working paper. [20]	5
6		6
7	WEINTRAUB, GABRIEL Y, C LANIER BENKARD, AND BENJAMIN VAN ROY (2008): "Markov perfect industry dynamics with many firms," <i>Econometrica</i> , 76 (6), 1375–1411. [20]	7
8		8
9	WHITE, MICHELLE J (1987): "Personal bankruptcy under the 1978 bankruptcy code: An economic analysis," <i>Ind. LJ</i> , 63, 1. [15]	9
10		9
11	——— (1989): "The corporate bankruptcy decision," <i>Journal of Economic Perspectives</i> , 3 (2), 129–151. [9]	10
12	——— (1994): "Corporate bankruptcy as a filtering device: Chapter 11 reorganizations and out-of-court debt restructurings," <i>The Journal of Law, Economics, and Organization</i> , 10 (2), 268–295. [9]	11
13	——— (2007): "Bankruptcy law," <i>Handbook of Law and Economics</i> , 2, 1013–1072. [9, 11, 12]	12
14		13
15		14
16		15
17		16
18		17
19		18
20		19
21		20
22		21
23		22
24		23
25		24
26		25
27		26
28		27
29		28
30		29
31		30
32		31